darkknight25 commited on
Commit
72201c8
·
verified ·
1 Parent(s): ed64ddb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -11
README.md CHANGED
@@ -159,7 +159,7 @@ X = scaler.fit_transform(df[['risk_score', 'confidence']])
159
 
160
 
161
  # Categorical Features:
162
- ```
163
  Encode event_type, severity, and other categorical fields using LabelEncoder or one-hot encoding:from sklearn.preprocessing import LabelEncoder
164
 
165
  le = LabelEncoder()
@@ -198,7 +198,7 @@ Convert timestamp to datetime for temporal analysis:df['timestamp'] = pd.to_date
198
  Below are example ML/AI workflows using Hugging Face and other libraries.
199
  Anomaly Detection (Isolation Forest)
200
  Detect unusual events like zero-day exploits or beaconing:
201
- ```pyhton
202
  from datasets import load_dataset
203
  from sklearn.ensemble import IsolationForest
204
  import pandas as pd
@@ -214,7 +214,7 @@ print(f"Detected {len(anomalies)} anomalies")
214
  ```
215
  Threat Classification (Transformers)
216
  Classify events by severity using a BERT model:
217
- ```pyhton
218
  from datasets import load_dataset
219
  from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments
220
  from sklearn.preprocessing import LabelEncoder
@@ -246,7 +246,7 @@ trainer.train()
246
  ```
247
  Time-Series Forecasting (Prophet)
248
  Forecast risk_score trends:
249
- ```
250
  from datasets import load_dataset
251
  from prophet import Prophet
252
  import pandas as pd
@@ -281,19 +281,20 @@ auth_df['cluster'] = kmeans.fit_predict(X)
281
  print(auth_df.groupby('cluster')[['user', 'action']].describe())
282
  ```
283
  # Limitations
284
-
285
  Synthetic Nature: The dataset is synthetic and may not fully capture real-world SIEM log complexities, such as vendor-specific formats or noise patterns.
286
  Class Imbalance: Certain event_type (e.g., ai, iot) or severity (e.g., emergency) values may be underrepresented. Use data augmentation or reweighting for balanced training.
287
  Missing Values: Some dst_ip fields in ids_alert events are "N/A", requiring imputation or filtering.
288
  Timestamp Anomalies: 5% of records include intentional timestamp anomalies (future/past dates) to simulate time-based attacks, which may require special handling.
289
-
290
- Bias and Ethical Considerations
291
-
292
  The dataset includes synthetic geo_location data with a 5% chance of high-risk locations (e.g., North Korea, Russia). This is for anomaly simulation and not indicative of real-world biases. Ensure models do not inadvertently profile based on geo_location.
293
  User names and other PII-like fields are generated using faker and do not represent real individuals.
294
  Models trained on this dataset should be validated to avoid overfitting to synthetic patterns.
295
-
296
  # Citation
 
297
  If you use this dataset in your work, please cite:
298
  @dataset{advanced_siem_dataset_2025,
299
  author = {sunnythakur},
@@ -302,10 +303,11 @@ If you use this dataset in your work, please cite:
302
  publisher = {Hugging Face},
303
  url = {https://huggingface.co/datasets/darkknight25/advanced_siem_dataset}
304
  }
305
-
306
 
307
  # Acknowledgments
308
-
309
  Generated using a custom Python script (datasetcreator.py) with faker and numpy.
310
  Inspired by real-world SIEM log formats (e.g., CEF) and MITRE ATT&CK framework.
311
  Thanks to the Hugging Face community for providing tools to share and process datasets.
 
 
159
 
160
 
161
  # Categorical Features:
162
+ ```java
163
  Encode event_type, severity, and other categorical fields using LabelEncoder or one-hot encoding:from sklearn.preprocessing import LabelEncoder
164
 
165
  le = LabelEncoder()
 
198
  Below are example ML/AI workflows using Hugging Face and other libraries.
199
  Anomaly Detection (Isolation Forest)
200
  Detect unusual events like zero-day exploits or beaconing:
201
+ ```python
202
  from datasets import load_dataset
203
  from sklearn.ensemble import IsolationForest
204
  import pandas as pd
 
214
  ```
215
  Threat Classification (Transformers)
216
  Classify events by severity using a BERT model:
217
+ ```python
218
  from datasets import load_dataset
219
  from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments
220
  from sklearn.preprocessing import LabelEncoder
 
246
  ```
247
  Time-Series Forecasting (Prophet)
248
  Forecast risk_score trends:
249
+ ```java
250
  from datasets import load_dataset
251
  from prophet import Prophet
252
  import pandas as pd
 
281
  print(auth_df.groupby('cluster')[['user', 'action']].describe())
282
  ```
283
  # Limitations
284
+ ```java
285
  Synthetic Nature: The dataset is synthetic and may not fully capture real-world SIEM log complexities, such as vendor-specific formats or noise patterns.
286
  Class Imbalance: Certain event_type (e.g., ai, iot) or severity (e.g., emergency) values may be underrepresented. Use data augmentation or reweighting for balanced training.
287
  Missing Values: Some dst_ip fields in ids_alert events are "N/A", requiring imputation or filtering.
288
  Timestamp Anomalies: 5% of records include intentional timestamp anomalies (future/past dates) to simulate time-based attacks, which may require special handling.
289
+ ```
290
+ # Bias and Ethical Considerations
291
+ ```
292
  The dataset includes synthetic geo_location data with a 5% chance of high-risk locations (e.g., North Korea, Russia). This is for anomaly simulation and not indicative of real-world biases. Ensure models do not inadvertently profile based on geo_location.
293
  User names and other PII-like fields are generated using faker and do not represent real individuals.
294
  Models trained on this dataset should be validated to avoid overfitting to synthetic patterns.
295
+ ```
296
  # Citation
297
+ ```
298
  If you use this dataset in your work, please cite:
299
  @dataset{advanced_siem_dataset_2025,
300
  author = {sunnythakur},
 
303
  publisher = {Hugging Face},
304
  url = {https://huggingface.co/datasets/darkknight25/advanced_siem_dataset}
305
  }
306
+ ```
307
 
308
  # Acknowledgments
309
+ ```
310
  Generated using a custom Python script (datasetcreator.py) with faker and numpy.
311
  Inspired by real-world SIEM log formats (e.g., CEF) and MITRE ATT&CK framework.
312
  Thanks to the Hugging Face community for providing tools to share and process datasets.
313
+ ```