File size: 2,319 Bytes
bc2039a 2ba89c1 1ed5887 bc2039a 62f4346 c52d269 62f4346 bc2039a 091b851 62f4346 091b851 0052772 7979576 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: other
license_name: custom-split-licensing
license_link: LICENSE
configs:
- config_name: default
data_files:
- split: eval
path:
- "ego4d/frames/**"
- "ego4d/annotations/**"
- "mose/frames/**"
- "mose/annotations/**"
- "lvos/frames/**"
- "lvos/annotations/**"
---
<div align="center">
<h1> Is This Tracker On? A Benchmark Protocol for Dynamic Tracking </h1>
</div>
<div align="center">
<!-- <a href="#model">Model</a> β’ -->
π <a href="https://glab-caltech.github.io/ITTO/">Project Website</a> |
<!-- π <a href="https://hkust-nlp.github.io/agentboard/static/leaderboard.html">Leaderboard</a> | -->
π» <a href="https://github.com/ilonadem/itto/tree/main">Code</a> |
π <a href=" ">Paper</a>
</div>
# Dataset card for ITTO
ITTO is a challenging new benchmark suite for evaluating and diagnosing the capabilities and limitations of point tracking methods.
## Installation:
ITTO contains three component datasets: (1) MOSE, (2) L-VOS, (3) Ego4D. You will have to install the L-VOS and Ego4D components of the dataset individually due to licensing permissions.
1. First, install the dataset:
```
git clone https://huggingface.co/datasets/demalenk/itto
```
2. Next, install the L-VOS portion. Note that this will create temporary files in intermediate steps:
```
bash lvos/install_lvos.sh
```
3. Next, install the Ego4D portion of the dataset. Note that you have need access to obtain access to Ego4D data. License requests can take a few hours to a few days, and can be obtained here: https://ego4d-data.org/docs/start-here/
Make sure that you have the ego4d CLI installed by running:
```
pip install ego4d
```
```
bash ego4d/install_ego4d.sh
```
## Running Evaluations with ITTO
We provide evaluation scripts in the [ITTO github repo](https://github.com/ilonadem/itto), which contains dataloaders and model evaluation scripts for the numbers reported in the paper.
## Citing ITTO
ITTO aggregates videos from three public datasets: [MOSE](https://github.com/henghuiding/MOSE-api), [LVOS](https://github.com/LingyiHongfd/LVOS), and [Ego4D](https://ego4d-data.org/). Please cite all of them in addition to citing ITTO. Each component keeps its original license and usage terms. We provide all license information in [`LICENSE.md`](LICENSE). |