Eugene Siow
commited on
Commit
·
600666e
1
Parent(s):
6ac4e0a
Add data.
Browse files- BSD100.py +137 -0
- README.md +192 -0
- data/BSD100_HR.tar.gz +3 -0
- data/BSD100_LR_x2.tar.gz +3 -0
- data/BSD100_LR_x3.tar.gz +3 -0
- data/BSD100_LR_x4.tar.gz +3 -0
BSD100.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""BSD100 dataset: An evaluation dataset for the image super resolution task"""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import datasets
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
_CITATION = """
|
| 23 |
+
@inproceedings{martin2001database,
|
| 24 |
+
title={A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics},
|
| 25 |
+
author={Martin, David and Fowlkes, Charless and Tal, Doron and Malik, Jitendra},
|
| 26 |
+
booktitle={Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001},
|
| 27 |
+
volume={2},
|
| 28 |
+
pages={416--423},
|
| 29 |
+
year={2001},
|
| 30 |
+
organization={IEEE}
|
| 31 |
+
}
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
_DESCRIPTION = """
|
| 35 |
+
BSD is a dataset used frequently for image denoising and super-resolution.
|
| 36 |
+
BSD100 is the testing set of the Berkeley segmentation dataset BSD300.
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
_HOMEPAGE = "https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/"
|
| 40 |
+
|
| 41 |
+
_LICENSE = "UNK"
|
| 42 |
+
|
| 43 |
+
_DL_URL = "https://huggingface.co/datasets/eugenesiow/BSD100/resolve/main/data/"
|
| 44 |
+
|
| 45 |
+
_DEFAULT_CONFIG = "bicubic_x2"
|
| 46 |
+
|
| 47 |
+
_DATA_OPTIONS = {
|
| 48 |
+
"bicubic_x2": {
|
| 49 |
+
"hr": _DL_URL + "BSD100_HR.tar.gz",
|
| 50 |
+
"lr": _DL_URL + "BSD100_LR_x2.tar.gz",
|
| 51 |
+
},
|
| 52 |
+
"bicubic_x3": {
|
| 53 |
+
"hr": _DL_URL + "BSD100_HR.tar.gz",
|
| 54 |
+
"lr": _DL_URL + "BSD100_LR_x3.tar.gz",
|
| 55 |
+
},
|
| 56 |
+
"bicubic_x4": {
|
| 57 |
+
"hr": _DL_URL + "BSD100_HR.tar.gz",
|
| 58 |
+
"lr": _DL_URL + "BSD100_LR_x4.tar.gz",
|
| 59 |
+
}
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class Bsd100Config(datasets.BuilderConfig):
|
| 64 |
+
"""BuilderConfig for BSD100."""
|
| 65 |
+
|
| 66 |
+
def __init__(
|
| 67 |
+
self,
|
| 68 |
+
name,
|
| 69 |
+
hr_url,
|
| 70 |
+
lr_url,
|
| 71 |
+
**kwargs,
|
| 72 |
+
):
|
| 73 |
+
if name not in _DATA_OPTIONS:
|
| 74 |
+
raise ValueError("data must be one of %s" % _DATA_OPTIONS)
|
| 75 |
+
super(Bsd100Config, self).__init__(name=name, version=datasets.Version("1.0.0"), **kwargs)
|
| 76 |
+
self.hr_url = hr_url
|
| 77 |
+
self.lr_url = lr_url
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class Bsd100(datasets.GeneratorBasedBuilder):
|
| 81 |
+
"""BSD100 dataset for single image super resolution evaluation."""
|
| 82 |
+
|
| 83 |
+
BUILDER_CONFIGS = [
|
| 84 |
+
Bsd100Config(
|
| 85 |
+
name=key,
|
| 86 |
+
hr_url=values['hr'],
|
| 87 |
+
lr_url=values['lr']
|
| 88 |
+
) for key, values in _DATA_OPTIONS.items()
|
| 89 |
+
]
|
| 90 |
+
|
| 91 |
+
DEFAULT_CONFIG_NAME = _DEFAULT_CONFIG
|
| 92 |
+
|
| 93 |
+
def _info(self):
|
| 94 |
+
features = datasets.Features(
|
| 95 |
+
{
|
| 96 |
+
"hr": datasets.Value("string"),
|
| 97 |
+
"lr": datasets.Value("string"),
|
| 98 |
+
}
|
| 99 |
+
)
|
| 100 |
+
return datasets.DatasetInfo(
|
| 101 |
+
description=_DESCRIPTION,
|
| 102 |
+
features=features,
|
| 103 |
+
supervised_keys=None,
|
| 104 |
+
homepage=_HOMEPAGE,
|
| 105 |
+
license=_LICENSE,
|
| 106 |
+
citation=_CITATION,
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
def _split_generators(self, dl_manager):
|
| 110 |
+
"""Returns SplitGenerators."""
|
| 111 |
+
hr_data_dir = dl_manager.download_and_extract(self.config.hr_url)
|
| 112 |
+
lr_data_dir = dl_manager.download_and_extract(self.config.lr_url)
|
| 113 |
+
return [
|
| 114 |
+
datasets.SplitGenerator(
|
| 115 |
+
name=datasets.Split.VALIDATION,
|
| 116 |
+
# These kwargs will be passed to _generate_examples
|
| 117 |
+
gen_kwargs={
|
| 118 |
+
"lr_path": lr_data_dir,
|
| 119 |
+
"hr_path": str(Path(hr_data_dir) / 'BSD100_HR')
|
| 120 |
+
},
|
| 121 |
+
)
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
def _generate_examples(
|
| 125 |
+
self, hr_path, lr_path
|
| 126 |
+
):
|
| 127 |
+
""" Yields examples as (key, example) tuples. """
|
| 128 |
+
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
| 129 |
+
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
| 130 |
+
extensions = {'.png'}
|
| 131 |
+
for file_path in sorted(Path(lr_path).glob("**/*")):
|
| 132 |
+
if file_path.suffix in extensions:
|
| 133 |
+
file_path_str = str(file_path.as_posix())
|
| 134 |
+
yield file_path_str, {
|
| 135 |
+
'lr': file_path_str,
|
| 136 |
+
'hr': str((Path(hr_path) / file_path.name).as_posix())
|
| 137 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
annotations_creators:
|
| 3 |
+
- machine-generated
|
| 4 |
+
language_creators:
|
| 5 |
+
- found
|
| 6 |
+
languages: []
|
| 7 |
+
licenses:
|
| 8 |
+
- other-academic-use
|
| 9 |
+
multilinguality:
|
| 10 |
+
- monolingual
|
| 11 |
+
pretty_name: BSD100
|
| 12 |
+
size_categories:
|
| 13 |
+
- unknown
|
| 14 |
+
source_datasets:
|
| 15 |
+
- original
|
| 16 |
+
task_categories:
|
| 17 |
+
- other
|
| 18 |
+
task_ids:
|
| 19 |
+
- other-other-image-super-resolution
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
# Dataset Card for BSD100
|
| 23 |
+
|
| 24 |
+
## Table of Contents
|
| 25 |
+
- [Table of Contents](#table-of-contents)
|
| 26 |
+
- [Dataset Description](#dataset-description)
|
| 27 |
+
- [Dataset Summary](#dataset-summary)
|
| 28 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
| 29 |
+
- [Languages](#languages)
|
| 30 |
+
- [Dataset Structure](#dataset-structure)
|
| 31 |
+
- [Data Instances](#data-instances)
|
| 32 |
+
- [Data Fields](#data-fields)
|
| 33 |
+
- [Data Splits](#data-splits)
|
| 34 |
+
- [Dataset Creation](#dataset-creation)
|
| 35 |
+
- [Curation Rationale](#curation-rationale)
|
| 36 |
+
- [Source Data](#source-data)
|
| 37 |
+
- [Annotations](#annotations)
|
| 38 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
| 39 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
| 40 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
| 41 |
+
- [Discussion of Biases](#discussion-of-biases)
|
| 42 |
+
- [Other Known Limitations](#other-known-limitations)
|
| 43 |
+
- [Additional Information](#additional-information)
|
| 44 |
+
- [Dataset Curators](#dataset-curators)
|
| 45 |
+
- [Licensing Information](#licensing-information)
|
| 46 |
+
- [Citation Information](#citation-information)
|
| 47 |
+
- [Contributions](#contributions)
|
| 48 |
+
|
| 49 |
+
## Dataset Description
|
| 50 |
+
|
| 51 |
+
- **Homepage**: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
|
| 52 |
+
- **Repository**: https://huggingface.co/datasets/eugenesiow/BSD100
|
| 53 |
+
- **Paper**: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=937655
|
| 54 |
+
- **Leaderboard**: https://github.com/eugenesiow/super-image#scale-x2
|
| 55 |
+
|
| 56 |
+
### Dataset Summary
|
| 57 |
+
|
| 58 |
+
BSD is a dataset used frequently for image denoising and super-resolution. Of the subdatasets, BSD100 is aclassical image dataset having 100 test images proposed by [Martin et al. (2001)](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=937655). The dataset is composed of a large variety of images ranging from natural images to object-specific such as plants, people, food etc. BSD100 is the testing set of the Berkeley segmentation dataset BSD300.
|
| 59 |
+
|
| 60 |
+
Install with `pip`:
|
| 61 |
+
```bash
|
| 62 |
+
pip install datasets super-image
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
Evaluate a model with the [`super-image`](https://github.com/eugenesiow/super-image) library:
|
| 66 |
+
```python
|
| 67 |
+
from datasets import load_dataset
|
| 68 |
+
from super_image import EdsrModel
|
| 69 |
+
from super_image.data import EvalDataset, EvalMetrics
|
| 70 |
+
|
| 71 |
+
dataset = load_dataset('eugenesiow/BSD100', 'bicubic_x2', split='validation')
|
| 72 |
+
eval_dataset = EvalDataset(dataset)
|
| 73 |
+
model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=2)
|
| 74 |
+
EvalMetrics().evaluate(model, eval_dataset)
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
### Supported Tasks and Leaderboards
|
| 78 |
+
|
| 79 |
+
The dataset is commonly used for evaluation of the `image-super-resolution` task.
|
| 80 |
+
|
| 81 |
+
Unofficial [`super-image`](https://github.com/eugenesiow/super-image) leaderboard for:
|
| 82 |
+
- [Scale 2](https://github.com/eugenesiow/super-image#scale-x2)
|
| 83 |
+
- [Scale 3](https://github.com/eugenesiow/super-image#scale-x3)
|
| 84 |
+
- [Scale 4](https://github.com/eugenesiow/super-image#scale-x4)
|
| 85 |
+
- [Scale 8](https://github.com/eugenesiow/super-image#scale-x8)
|
| 86 |
+
|
| 87 |
+
### Languages
|
| 88 |
+
|
| 89 |
+
Not applicable.
|
| 90 |
+
|
| 91 |
+
## Dataset Structure
|
| 92 |
+
|
| 93 |
+
### Data Instances
|
| 94 |
+
|
| 95 |
+
An example of `validation` for `bicubic_x2` looks as follows.
|
| 96 |
+
```
|
| 97 |
+
{
|
| 98 |
+
"hr": "/.cache/huggingface/datasets/downloads/extracted/BSD100_HR/3096.png",
|
| 99 |
+
"lr": "/.cache/huggingface/datasets/downloads/extracted/BSD100_LR_x2/3096.png"
|
| 100 |
+
}
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
### Data Fields
|
| 104 |
+
|
| 105 |
+
The data fields are the same among all splits.
|
| 106 |
+
|
| 107 |
+
- `hr`: a `string` to the path of the High Resolution (HR) `.png` image.
|
| 108 |
+
- `lr`: a `string` to the path of the Low Resolution (LR) `.png` image.
|
| 109 |
+
|
| 110 |
+
### Data Splits
|
| 111 |
+
|
| 112 |
+
| name |validation|
|
| 113 |
+
|-------|---:|
|
| 114 |
+
|bicubic_x2|100|
|
| 115 |
+
|bicubic_x3|100|
|
| 116 |
+
|bicubic_x4|100|
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
## Dataset Creation
|
| 120 |
+
|
| 121 |
+
### Curation Rationale
|
| 122 |
+
|
| 123 |
+
[More Information Needed]
|
| 124 |
+
|
| 125 |
+
### Source Data
|
| 126 |
+
|
| 127 |
+
#### Initial Data Collection and Normalization
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Who are the source language producers?
|
| 132 |
+
|
| 133 |
+
[More Information Needed]
|
| 134 |
+
|
| 135 |
+
### Annotations
|
| 136 |
+
|
| 137 |
+
#### Annotation process
|
| 138 |
+
|
| 139 |
+
No annotations.
|
| 140 |
+
|
| 141 |
+
#### Who are the annotators?
|
| 142 |
+
|
| 143 |
+
No annotators.
|
| 144 |
+
|
| 145 |
+
### Personal and Sensitive Information
|
| 146 |
+
|
| 147 |
+
[More Information Needed]
|
| 148 |
+
|
| 149 |
+
## Considerations for Using the Data
|
| 150 |
+
|
| 151 |
+
### Social Impact of Dataset
|
| 152 |
+
|
| 153 |
+
[More Information Needed]
|
| 154 |
+
|
| 155 |
+
### Discussion of Biases
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Other Known Limitations
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
## Additional Information
|
| 164 |
+
|
| 165 |
+
### Dataset Curators
|
| 166 |
+
|
| 167 |
+
- **Original Authors**: [Martin et al. (2001)](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=937655)
|
| 168 |
+
|
| 169 |
+
### Licensing Information
|
| 170 |
+
|
| 171 |
+
You are free to download a portion of the dataset for non-commercial research and educational purposes.
|
| 172 |
+
In exchange, we request only that you make available to us the results of running your segmentation or
|
| 173 |
+
boundary detection algorithm on the test set as described below. Work based on the dataset should cite
|
| 174 |
+
the [Martin et al. (2001)](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=937655) paper.
|
| 175 |
+
|
| 176 |
+
### Citation Information
|
| 177 |
+
|
| 178 |
+
```bibtex
|
| 179 |
+
@inproceedings{martin2001database,
|
| 180 |
+
title={A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics},
|
| 181 |
+
author={Martin, David and Fowlkes, Charless and Tal, Doron and Malik, Jitendra},
|
| 182 |
+
booktitle={Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001},
|
| 183 |
+
volume={2},
|
| 184 |
+
pages={416--423},
|
| 185 |
+
year={2001},
|
| 186 |
+
organization={IEEE}
|
| 187 |
+
}
|
| 188 |
+
```
|
| 189 |
+
|
| 190 |
+
### Contributions
|
| 191 |
+
|
| 192 |
+
Thanks to [@eugenesiow](https://github.com/eugenesiow) for adding this dataset.
|
data/BSD100_HR.tar.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:333495ccded04a0db52b33361140821ea7e0d8af8dfb54b58df79a00010858d6
|
| 3 |
+
size 27186832
|
data/BSD100_LR_x2.tar.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6da0054efcf335dcf2da9e37105aad87a6e0778c0cf601f5f0d82b5e86e2569c
|
| 3 |
+
size 7336320
|
data/BSD100_LR_x3.tar.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d344aab7f0167a408345632aae545bbae59a26a3048a8352e50352a23962ac64
|
| 3 |
+
size 3374269
|
data/BSD100_LR_x4.tar.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:71e47b5326dd6d66486a56900f3b61defc7874cf54a2c36d165d5ada1abcbbea
|
| 3 |
+
size 1925876
|