Create create_dataset.py
Browse files- create_dataset.py +106 -0
create_dataset.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from datasets import DatasetDict, Audio
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from datasets.table import embed_table_storage
|
| 5 |
+
import argparse
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
if __name__ == "__main__":
|
| 9 |
+
parser = argparse.ArgumentParser()
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
parser.add_argument("main_folder_path", type=str, help="Path of the base mls folder")
|
| 13 |
+
parser.add_argument("configuration", type=str, help="Dataset configuration to use, if necessary. Here corresponds to the language name.")
|
| 14 |
+
parser.add_argument("output_dir", type=str, help="Save the dataset on disk with this path.")
|
| 15 |
+
|
| 16 |
+
parser.add_argument("--cpu_num_workers", default=1, type=int, help="Number of CPU workers.")
|
| 17 |
+
parser.add_argument("--csv_folder_path", default=None, type=str, help="Path where to save intermediate csv, by default will be main_foldr_path")
|
| 18 |
+
parser.add_argument("--repo_id", default="facebook/multilingual_librispeech", type=str, help="Push the dataset to the hub.")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
args = parser.parse_args()
|
| 22 |
+
|
| 23 |
+
main_folder_path = args.main_folder_path
|
| 24 |
+
csv_folder_path = args.csv_folder_path if args.csv_folder_path is not None else main_folder_path
|
| 25 |
+
if not os.path.exists(csv_folder_path):
|
| 26 |
+
os.makedirs(csv_folder_path)
|
| 27 |
+
|
| 28 |
+
splits = ["dev", "test", "train"]
|
| 29 |
+
|
| 30 |
+
# total_length_per_split = 10_000 * 60 * 60 # in sec -> 10k hours
|
| 31 |
+
|
| 32 |
+
csv_dict = {}
|
| 33 |
+
for split in splits:
|
| 34 |
+
segment_path = os.path.join(main_folder_path, split, "segments.txt")
|
| 35 |
+
transcript_path = os.path.join(main_folder_path, split, "transcripts.txt")
|
| 36 |
+
|
| 37 |
+
segments = pd.read_csv(segment_path, sep='\t', names=["audio", "original_path", "begin_time", "end_time"],
|
| 38 |
+
index_col="audio")
|
| 39 |
+
transcripts = pd.read_csv(transcript_path, sep='\t', names=["audio", "transcript"], index_col="audio")
|
| 40 |
+
|
| 41 |
+
df = pd.concat([segments, transcripts], axis=1, join="inner")
|
| 42 |
+
print(
|
| 43 |
+
f"Segments and transcripts of {split} has been joined: new length {len(df)}, old lengths {(len(segments), len(transcripts))}")
|
| 44 |
+
|
| 45 |
+
# add audio duration
|
| 46 |
+
df["audio_duration"] = df["end_time"] - df["begin_time"]
|
| 47 |
+
df["split"] = split
|
| 48 |
+
|
| 49 |
+
print(f"len df {len(df)}")
|
| 50 |
+
|
| 51 |
+
df.to_csv(os.path.join(csv_folder_path, f"{split}.csv"))
|
| 52 |
+
csv_dict[split] = os.path.join(csv_folder_path, f"{split}.csv")
|
| 53 |
+
|
| 54 |
+
# take care of /limited_supervision
|
| 55 |
+
if split == "train":
|
| 56 |
+
nine_hours_segment_path = os.path.join(main_folder_path, "train/limited_supervision/9hr/handles.txt")
|
| 57 |
+
nine_hours_segment = pd.read_csv(nine_hours_segment_path, sep='\t', names=["audio"], index_col="audio").index
|
| 58 |
+
nine_hours_df = df.filter(items=nine_hours_segment, axis=0)
|
| 59 |
+
nine_hours_df.to_csv(os.path.join(csv_folder_path, f"9_hours.csv"))
|
| 60 |
+
csv_dict["9_hours"] = os.path.join(csv_folder_path, f"9_hours.csv")
|
| 61 |
+
|
| 62 |
+
one_hours_segments = [ os.path.join(f.path, "handles.txt") for f in os.scandir( os.path.join(main_folder_path, "train/limited_supervision/1hr")) if f.is_dir()]
|
| 63 |
+
one_hours_segments = pd.concat([pd.read_csv(one, sep='\t', names=["audio"], index_col="audio") for one in one_hours_segments], axis=0).index
|
| 64 |
+
one_hours_df = df.filter(items=one_hours_segments, axis=0)
|
| 65 |
+
one_hours_df.to_csv(os.path.join(csv_folder_path, f"1_hours.csv"))
|
| 66 |
+
csv_dict["1_hours"] = os.path.join(csv_folder_path, f"1_hours.csv")
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
dataset = DatasetDict.from_csv(csv_dict)
|
| 72 |
+
|
| 73 |
+
def extract_speaker_id_and_format_path(audio, split):
|
| 74 |
+
speaker_id = audio.split("_")[0]
|
| 75 |
+
chapter_id = audio.split("_")[1]
|
| 76 |
+
file = f"{audio}.opus"
|
| 77 |
+
|
| 78 |
+
path = os.path.join(main_folder_path, split, "audio", speaker_id, chapter_id, file)
|
| 79 |
+
return {"audio": path, "speaker_id": speaker_id, "chapter_id": chapter_id, "file": file, "id": audio}
|
| 80 |
+
|
| 81 |
+
# correct audio path
|
| 82 |
+
dataset = dataset.map(extract_speaker_id_and_format_path, input_columns=["audio", "split"], num_proc=args.cpu_num_workers, remove_columns=["split"])
|
| 83 |
+
dataset = dataset.cast_column("audio", Audio())
|
| 84 |
+
|
| 85 |
+
print(dataset)
|
| 86 |
+
print(dataset["dev"][0])
|
| 87 |
+
|
| 88 |
+
print("Embed table storage")
|
| 89 |
+
|
| 90 |
+
# load_dataset(...)
|
| 91 |
+
format = dataset["train"].format
|
| 92 |
+
dataset = dataset.with_format("arrow")
|
| 93 |
+
dataset = dataset.map(embed_table_storage, batched=True, num_proc=args.cpu_num_workers)
|
| 94 |
+
dataset = dataset.with_format(**format)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
dataset.save_to_disk(args.output_dir, num_proc=args.cpu_num_workers)
|
| 98 |
+
|
| 99 |
+
if args.repo_id:
|
| 100 |
+
pushed = False
|
| 101 |
+
while not pushed:
|
| 102 |
+
try:
|
| 103 |
+
dataset.push_to_hub(args.repo_id, args.configuration, revision="refs/pr/15")
|
| 104 |
+
pushed = True
|
| 105 |
+
except:
|
| 106 |
+
pass
|