Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
English
Size:
1M<n<10M
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Neural-Code-Search-Evaluation-Dataset presents an evaluation dataset consisting of natural language query and code snippet pairs""" | |
| import json | |
| from itertools import chain | |
| import datasets | |
| _CITATION = """\ | |
| @InProceedings{huggingface:dataset, | |
| title = {Neural Code Search Evaluation Dataset}, | |
| authors = {Hongyu Li, Seohyun Kim and Satish Chandra}, | |
| journal = {arXiv e-prints}, | |
| year = 2018, | |
| eid = {arXiv:1908.09804 [cs.SE]}, | |
| pages = {arXiv:1908.09804 [cs.SE]}, | |
| archivePrefix = {arXiv}, | |
| eprint = {1908.09804}, | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| Neural-Code-Search-Evaluation-Dataset presents an evaluation dataset \ | |
| consisting of natural language query and code snippet pairs and a search corpus \ | |
| consisting of code snippets collected from the most popular Android repositories \ | |
| on GitHub. | |
| """ | |
| _HOMEPAGE = "https://github.com/facebookresearch/Neural-Code-Search-Evaluation-Dataset/tree/master/data" | |
| _LICENSE = "CC-BY-NC 4.0 (Attr Non-Commercial Inter.)" | |
| _BASE_URL = "https://raw.githubusercontent.com/facebookresearch/Neural-Code-Search-Evaluation-Dataset/master/data/" | |
| _URLs = { | |
| "evaluation_dataset": _BASE_URL + "287_android_questions.json", | |
| "search_corpus_1": _BASE_URL + "search_corpus_1.tar.gz", | |
| "search_corpus_2": _BASE_URL + "search_corpus_2.tar.gz", | |
| } | |
| class NeuralCodeSearch(datasets.GeneratorBasedBuilder): | |
| """Neural Code Search Evaluation Dataset""" | |
| VERSION = datasets.Version("1.1.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig( | |
| name="evaluation_dataset", | |
| version=VERSION, | |
| description="The evaluation dataset is composed of \ | |
| 287 Stack Overflow question and answer pairs", | |
| ), | |
| datasets.BuilderConfig( | |
| name="search_corpus", | |
| version=VERSION, | |
| description="The search corpus is indexed using all \ | |
| method bodies parsed from the 24,549 GitHub repositories.", | |
| ), | |
| ] | |
| FILENAME_MAP = { | |
| "evaluation_dataset": "287_android_questions.json", | |
| "search_corpus": "search_corpus_1.jsonl", | |
| } | |
| def _info(self): | |
| if self.config.name == "evaluation_dataset": | |
| features = datasets.Features( | |
| { | |
| "stackoverflow_id": datasets.Value("int32"), | |
| "question": datasets.Value("string"), | |
| "question_url": datasets.Value("string"), | |
| "question_author": datasets.Value("string"), | |
| "question_author_url": datasets.Value("string"), | |
| "answer": datasets.Value("string"), | |
| "answer_url": datasets.Value("string"), | |
| "answer_author": datasets.Value("string"), | |
| "answer_author_url": datasets.Value("string"), | |
| "examples": datasets.features.Sequence(datasets.Value("int32")), | |
| "examples_url": datasets.features.Sequence(datasets.Value("string")), | |
| } | |
| ) | |
| else: | |
| features = datasets.Features( | |
| { | |
| "id": datasets.Value("int32"), | |
| "filepath": datasets.Value("string"), | |
| "method_name": datasets.Value("string"), | |
| "start_line": datasets.Value("int32"), | |
| "end_line": datasets.Value("int32"), | |
| "url": datasets.Value("string"), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| if self.config.name == "evaluation_dataset": | |
| filepath = dl_manager.download_and_extract(_URLs[self.config.name]) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"filepath": filepath}, | |
| ), | |
| ] | |
| else: | |
| my_urls = [url for config, url in _URLs.items() if config.startswith(self.config.name)] | |
| archives = dl_manager.download(my_urls) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "files": chain(*(dl_manager.iter_archive(archive) for archive in archives)), | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath=None, files=None): | |
| """Yields examples.""" | |
| id_ = 0 | |
| if self.config.name == "evaluation_dataset": | |
| with open(filepath, encoding="utf-8") as f: | |
| data = json.load(f) | |
| for row in data: | |
| yield id_, { | |
| "stackoverflow_id": row["stackoverflow_id"], | |
| "question": row["question"], | |
| "question_url": row["question_url"], | |
| "question_author": row["question_author"], | |
| "question_author_url": row["question_author_url"], | |
| "answer": row["answer"], | |
| "answer_url": row["answer_url"], | |
| "answer_author": row["answer_author"], | |
| "answer_author_url": row["answer_author_url"], | |
| "examples": row["examples"], | |
| "examples_url": row["examples_url"], | |
| } | |
| id_ += 1 | |
| else: | |
| for _, f in files: | |
| for row in f: | |
| data_dict = json.loads(row.decode("utf-8")) | |
| yield id_, { | |
| "id": data_dict["id"], | |
| "filepath": data_dict["filepath"], | |
| "method_name": data_dict["method_name"], | |
| "start_line": data_dict["start_line"], | |
| "end_line": data_dict["end_line"], | |
| "url": data_dict["url"], | |
| } | |
| id_ += 1 | |