Datasets:
Update diffusiondb-pixelart.py
Browse files- diffusiondb-pixelart.py +8 -95
diffusiondb-pixelart.py
CHANGED
|
@@ -41,9 +41,7 @@ _VERSION = datasets.Version("0.9.1")
|
|
| 41 |
# hf_hub_url() provides a more flexible way to resolve the file URLs
|
| 42 |
# https://huggingface.co/datasets/jainr3/diffusiondb-pixelart/resolve/main/images/part-000001.zip
|
| 43 |
_URLS = {}
|
| 44 |
-
_URLS_LARGE = {}
|
| 45 |
_PART_IDS = range(1, 2001)
|
| 46 |
-
_PART_IDS_LARGE = range(1, 14001)
|
| 47 |
|
| 48 |
for i in _PART_IDS:
|
| 49 |
_URLS[i] = hf_hub_url(
|
|
@@ -52,31 +50,12 @@ for i in _PART_IDS:
|
|
| 52 |
repo_type="dataset",
|
| 53 |
)
|
| 54 |
|
| 55 |
-
for i in _PART_IDS_LARGE:
|
| 56 |
-
if i < 10001:
|
| 57 |
-
_URLS_LARGE[i] = hf_hub_url(
|
| 58 |
-
"jainr3/diffusiondb-pixelart",
|
| 59 |
-
filename=f"diffusiondb-pixelart-large-part-1/part-{i:06}.zip",
|
| 60 |
-
repo_type="dataset",
|
| 61 |
-
)
|
| 62 |
-
else:
|
| 63 |
-
_URLS_LARGE[i] = hf_hub_url(
|
| 64 |
-
"jainr3/diffusiondb-pixelart",
|
| 65 |
-
filename=f"diffusiondb-pixelart-large-part-2/part-{i:06}.zip",
|
| 66 |
-
repo_type="dataset",
|
| 67 |
-
)
|
| 68 |
|
| 69 |
# Add the metadata parquet URL as well
|
| 70 |
_URLS["metadata"] = hf_hub_url(
|
| 71 |
"jainr3/diffusiondb-pixelart", filename="metadata.parquet", repo_type="dataset"
|
| 72 |
)
|
| 73 |
|
| 74 |
-
_URLS_LARGE["metadata"] = hf_hub_url(
|
| 75 |
-
"jainr3/diffusiondb-pixelart",
|
| 76 |
-
filename="metadata-large.parquet",
|
| 77 |
-
repo_type="dataset",
|
| 78 |
-
)
|
| 79 |
-
|
| 80 |
_SAMPLER_DICT = {
|
| 81 |
1: "ddim",
|
| 82 |
2: "plms",
|
|
@@ -93,16 +72,14 @@ _SAMPLER_DICT = {
|
|
| 93 |
class DiffusionDBConfig(datasets.BuilderConfig):
|
| 94 |
"""BuilderConfig for DiffusionDB."""
|
| 95 |
|
| 96 |
-
def __init__(self, part_ids,
|
| 97 |
"""BuilderConfig for DiffusionDB.
|
| 98 |
Args:
|
| 99 |
part_ids([int]): A list of part_ids.
|
| 100 |
-
is_large(bool): If downloading data from DiffusionDB Large (14 million)
|
| 101 |
**kwargs: keyword arguments forwarded to super.
|
| 102 |
"""
|
| 103 |
super(DiffusionDBConfig, self).__init__(version=_VERSION, **kwargs)
|
| 104 |
self.part_ids = part_ids
|
| 105 |
-
self.is_large = is_large
|
| 106 |
|
| 107 |
|
| 108 |
class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
@@ -114,50 +91,8 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 114 |
# as the config key)
|
| 115 |
for num_k in [1, 5, 10, 50, 100, 500, 1000]:
|
| 116 |
for sampling in ["first", "random"]:
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
subset_str = "large_" if is_large else "2m_"
|
| 120 |
-
|
| 121 |
-
if sampling == "random":
|
| 122 |
-
# Name the config
|
| 123 |
-
cur_name = subset_str + "random_" + num_k_str
|
| 124 |
-
|
| 125 |
-
# Add a short description for each config
|
| 126 |
-
cur_description = (
|
| 127 |
-
f"Random {num_k_str} images with their prompts and parameters"
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
# Sample part_ids
|
| 131 |
-
total_part_ids = _PART_IDS_LARGE if is_large else _PART_IDS
|
| 132 |
-
part_ids = np.random.choice(
|
| 133 |
-
total_part_ids, num_k, replace=False
|
| 134 |
-
).tolist()
|
| 135 |
-
else:
|
| 136 |
-
# Name the config
|
| 137 |
-
cur_name = subset_str + "first_" + num_k_str
|
| 138 |
-
|
| 139 |
-
# Add a short description for each config
|
| 140 |
-
cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters"
|
| 141 |
-
|
| 142 |
-
# Sample part_ids
|
| 143 |
-
total_part_ids = _PART_IDS_LARGE if is_large else _PART_IDS
|
| 144 |
-
part_ids = total_part_ids[1 : num_k + 1]
|
| 145 |
-
|
| 146 |
-
# Create configs
|
| 147 |
-
BUILDER_CONFIGS.append(
|
| 148 |
-
DiffusionDBConfig(
|
| 149 |
-
name=cur_name,
|
| 150 |
-
part_ids=part_ids,
|
| 151 |
-
is_large=is_large,
|
| 152 |
-
description=cur_description,
|
| 153 |
-
),
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
# Add few more options for Large only
|
| 157 |
-
for num_k in [5000, 10000]:
|
| 158 |
-
for sampling in ["first", "random"]:
|
| 159 |
-
num_k_str = f"{num_k // 1000}m"
|
| 160 |
-
subset_str = "large_"
|
| 161 |
|
| 162 |
if sampling == "random":
|
| 163 |
# Name the config
|
|
@@ -169,7 +104,7 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 169 |
)
|
| 170 |
|
| 171 |
# Sample part_ids
|
| 172 |
-
total_part_ids =
|
| 173 |
part_ids = np.random.choice(
|
| 174 |
total_part_ids, num_k, replace=False
|
| 175 |
).tolist()
|
|
@@ -181,7 +116,7 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 181 |
cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters"
|
| 182 |
|
| 183 |
# Sample part_ids
|
| 184 |
-
total_part_ids =
|
| 185 |
part_ids = total_part_ids[1 : num_k + 1]
|
| 186 |
|
| 187 |
# Create configs
|
|
@@ -189,26 +124,16 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 189 |
DiffusionDBConfig(
|
| 190 |
name=cur_name,
|
| 191 |
part_ids=part_ids,
|
| 192 |
-
is_large=True,
|
| 193 |
description=cur_description,
|
| 194 |
),
|
| 195 |
)
|
| 196 |
|
| 197 |
-
|
|
|
|
| 198 |
BUILDER_CONFIGS.append(
|
| 199 |
DiffusionDBConfig(
|
| 200 |
name="2m_all",
|
| 201 |
part_ids=_PART_IDS,
|
| 202 |
-
is_large=False,
|
| 203 |
-
description="All images with their prompts and parameters",
|
| 204 |
-
),
|
| 205 |
-
)
|
| 206 |
-
|
| 207 |
-
BUILDER_CONFIGS.append(
|
| 208 |
-
DiffusionDBConfig(
|
| 209 |
-
name="large_all",
|
| 210 |
-
part_ids=_PART_IDS_LARGE,
|
| 211 |
-
is_large=True,
|
| 212 |
description="All images with their prompts and parameters",
|
| 213 |
),
|
| 214 |
)
|
|
@@ -218,19 +143,10 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 218 |
DiffusionDBConfig(
|
| 219 |
name="2m_text_only",
|
| 220 |
part_ids=[],
|
| 221 |
-
is_large=False,
|
| 222 |
description="Only include all prompts and parameters (no image)",
|
| 223 |
),
|
| 224 |
)
|
| 225 |
|
| 226 |
-
BUILDER_CONFIGS.append(
|
| 227 |
-
DiffusionDBConfig(
|
| 228 |
-
name="large_text_only",
|
| 229 |
-
part_ids=[],
|
| 230 |
-
is_large=True,
|
| 231 |
-
description="Only include all prompts and parameters (no image)",
|
| 232 |
-
),
|
| 233 |
-
)
|
| 234 |
|
| 235 |
# Default to only load 1k random images
|
| 236 |
DEFAULT_CONFIG_NAME = "2m_random_1k"
|
|
@@ -300,10 +216,7 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 300 |
json_paths = []
|
| 301 |
|
| 302 |
# Resolve the urls
|
| 303 |
-
|
| 304 |
-
urls = _URLS_LARGE
|
| 305 |
-
else:
|
| 306 |
-
urls = _URLS
|
| 307 |
|
| 308 |
for cur_part_id in self.config.part_ids:
|
| 309 |
cur_url = urls[cur_part_id]
|
|
|
|
| 41 |
# hf_hub_url() provides a more flexible way to resolve the file URLs
|
| 42 |
# https://huggingface.co/datasets/jainr3/diffusiondb-pixelart/resolve/main/images/part-000001.zip
|
| 43 |
_URLS = {}
|
|
|
|
| 44 |
_PART_IDS = range(1, 2001)
|
|
|
|
| 45 |
|
| 46 |
for i in _PART_IDS:
|
| 47 |
_URLS[i] = hf_hub_url(
|
|
|
|
| 50 |
repo_type="dataset",
|
| 51 |
)
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
# Add the metadata parquet URL as well
|
| 55 |
_URLS["metadata"] = hf_hub_url(
|
| 56 |
"jainr3/diffusiondb-pixelart", filename="metadata.parquet", repo_type="dataset"
|
| 57 |
)
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
_SAMPLER_DICT = {
|
| 60 |
1: "ddim",
|
| 61 |
2: "plms",
|
|
|
|
| 72 |
class DiffusionDBConfig(datasets.BuilderConfig):
|
| 73 |
"""BuilderConfig for DiffusionDB."""
|
| 74 |
|
| 75 |
+
def __init__(self, part_ids, **kwargs):
|
| 76 |
"""BuilderConfig for DiffusionDB.
|
| 77 |
Args:
|
| 78 |
part_ids([int]): A list of part_ids.
|
|
|
|
| 79 |
**kwargs: keyword arguments forwarded to super.
|
| 80 |
"""
|
| 81 |
super(DiffusionDBConfig, self).__init__(version=_VERSION, **kwargs)
|
| 82 |
self.part_ids = part_ids
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
|
|
| 91 |
# as the config key)
|
| 92 |
for num_k in [1, 5, 10, 50, 100, 500, 1000]:
|
| 93 |
for sampling in ["first", "random"]:
|
| 94 |
+
num_k_str = f"{num_k}k" if num_k < 1000 else f"{num_k // 1000}m"
|
| 95 |
+
subset_str = "2m_"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
if sampling == "random":
|
| 98 |
# Name the config
|
|
|
|
| 104 |
)
|
| 105 |
|
| 106 |
# Sample part_ids
|
| 107 |
+
total_part_ids = _PART_IDS
|
| 108 |
part_ids = np.random.choice(
|
| 109 |
total_part_ids, num_k, replace=False
|
| 110 |
).tolist()
|
|
|
|
| 116 |
cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters"
|
| 117 |
|
| 118 |
# Sample part_ids
|
| 119 |
+
total_part_ids = _PART_IDS
|
| 120 |
part_ids = total_part_ids[1 : num_k + 1]
|
| 121 |
|
| 122 |
# Create configs
|
|
|
|
| 124 |
DiffusionDBConfig(
|
| 125 |
name=cur_name,
|
| 126 |
part_ids=part_ids,
|
|
|
|
| 127 |
description=cur_description,
|
| 128 |
),
|
| 129 |
)
|
| 130 |
|
| 131 |
+
|
| 132 |
+
# Need to manually add all (2m)
|
| 133 |
BUILDER_CONFIGS.append(
|
| 134 |
DiffusionDBConfig(
|
| 135 |
name="2m_all",
|
| 136 |
part_ids=_PART_IDS,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
description="All images with their prompts and parameters",
|
| 138 |
),
|
| 139 |
)
|
|
|
|
| 143 |
DiffusionDBConfig(
|
| 144 |
name="2m_text_only",
|
| 145 |
part_ids=[],
|
|
|
|
| 146 |
description="Only include all prompts and parameters (no image)",
|
| 147 |
),
|
| 148 |
)
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
# Default to only load 1k random images
|
| 152 |
DEFAULT_CONFIG_NAME = "2m_random_1k"
|
|
|
|
| 216 |
json_paths = []
|
| 217 |
|
| 218 |
# Resolve the urls
|
| 219 |
+
urls = _URLS
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
for cur_part_id in self.config.part_ids:
|
| 222 |
cur_url = urls[cur_part_id]
|