Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +16 -0
- BV_Chanlocs_60.mat +0 -0
- LICENSE.txt +208 -0
- MEASURES.xlsx +0 -0
- ONOFF.mat +0 -0
- PD_RewP_Script.m +301 -0
- README.md +67 -0
- data/8010_Session_1_PDDys_VV_withcueinfo.mat +3 -0
- data/801_Session_1_PDDys_VV_withcueinfo.mat +3 -0
- data/801_Session_2_PDDys_VV_withcueinfo.mat +3 -0
- data/802_Session_1_PDDys_VV_withcueinfo.mat +3 -0
- data/802_Session_2_PDDys_VV_withcueinfo.mat +3 -0
- data/803_Session_1_PDDys_VV_withcueinfo.mat +3 -0
- data/803_Session_2_PDDys_VV_withcueinfo.mat +3 -0
- data/804_Session_1_PDDys_VV_withcueinfo.mat +3 -0
- data/804_Session_2_PDDys_VV_withcueinfo.mat +3 -0
- data/805_Session_1_PDDys_VV_withcueinfo.mat +3 -0
- data/805_Session_2_PDDys_VV_withcueinfo.mat +3 -0
- data/8060_Session_1_PDDys_VV_withcueinfo.mat +3 -0
- data/806_Session_1_PDDys_VV_withcueinfo.mat +3 -0
- data/8070_Session_1_PDDys_VV_withcueinfo.mat +3 -0
- data/913_Session_1_PDDys_VV_withcueinfo.mat +3 -0
- data/914_Session_1_PDDys_VV_withcueinfo.mat +3 -0
- images/Examples.pptx +0 -0
- scripts/BEH README.docx +0 -0
- scripts/BEH_VV.m +702 -0
- scripts/BEH_VV_CTL.m +320 -0
- scripts/VV_Behavior.mat +0 -0
- scripts/VV_Behavior_CTL.mat +0 -0
- scripts/VV_Main.m +177 -0
- scripts/VV_Triggers.xlsx +0 -0
- scripts/buildTestTrials.m +24 -0
- scripts/buildTrainTrials.m +71 -0
- scripts/runChoice.m +210 -0
- scripts/runConditionNotice.m +28 -0
- scripts/runFeedback.m +99 -0
- scripts/runPractice.m +24 -0
- scripts/runTestTrial.m +16 -0
- scripts/runTrainTrial.m +15 -0
- scripts/taskDone.m +33 -0
- scripts/taskInit.m +83 -0
- scripts/test_Inst1.m +39 -0
- scripts/trainBreak.m +33 -0
- scripts/train_Inst1.m +35 -0
- scripts/train_Inst2.m +35 -0
- scripts/train_Inst3.m +35 -0
- scripts/train_Inst4.m +35 -0
- scripts/train_Inst5.m +37 -0
- scripts/train_Inst6.m +35 -0
- scripts/train_Inst_Xtra.m +35 -0
.gitattributes
CHANGED
|
@@ -57,3 +57,19 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 57 |
# Video files - compressed
|
| 58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
# Video files - compressed
|
| 58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
| 60 |
+
data/914_Session_1_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 61 |
+
data/913_Session_1_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 62 |
+
data/801_Session_2_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 63 |
+
data/802_Session_1_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 64 |
+
data/8010_Session_1_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 65 |
+
data/802_Session_2_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 66 |
+
data/803_Session_1_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 67 |
+
data/801_Session_1_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 68 |
+
data/803_Session_2_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 69 |
+
data/804_Session_1_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 70 |
+
data/804_Session_2_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 71 |
+
data/805_Session_1_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 72 |
+
data/805_Session_2_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 73 |
+
data/8060_Session_1_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 74 |
+
data/806_Session_1_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
| 75 |
+
data/8070_Session_1_PDDys_VV_withcueinfo.mat filter=lfs diff=lfs merge=lfs -text
|
BV_Chanlocs_60.mat
ADDED
|
Binary file (4.82 kB). View file
|
|
|
LICENSE.txt
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Public Domain Dedication and License (PDDL)
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
Preamble
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
The Open Data Commons – Public Domain Dedication and Licence is a document intended to allow you to freely share, modify, and use this work for any purpose and without any restrictions. This licence is intended for use on databases or their contents (“data”), either together or individually.
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
Many databases are covered by copyright. Some jurisdictions, mainly in Europe, have specific special rights that cover databases called the “sui generis” database right. Both of these sets of rights, as well as other legal rights used to protect databases and data, can create uncertainty or practical difficulty for those wishing to share databases and their underlying data but retain a limited amount of rights under a “some rights reserved” approach to licensing as outlined in the Science Commons Protocol for Implementing Open Access Data. As a result, this waiver and licence tries to the fullest extent possible to eliminate or fully license any rights that cover this database and data. Any Community Norms or similar statements of use of the database or data do not form a part of this document, and do not act as a contract for access or other terms of use for the database or data.
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
The position of the recipient of the work
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
Because this document places the database and its contents in or as close as possible within the public domain, there are no restrictions or requirements placed on the recipient by this document. Recipients may use this work commercially, use technical protection measures, combine this data or database with other databases or data, and share their changes and additions or keep them secret. It is not a requirement that recipients provide further users with a copy of this licence or attribute the original creator of the data or database as a source. The goal is to eliminate restrictions held by the original creator of the data and database on the use of it by others.
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
The position of the dedicator of the work
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
Copyright law, as with most other law under the banner of “intellectual property”, is inherently national law. This means that there exists several differences in how copyright and other IP rights can be relinquished, waived or licensed in the many legal jurisdictions of the world. This is despite much harmonisation of minimum levels of protection. The internet and other communication technologies span these many disparate legal jurisdictions and thus pose special difficulties for a document relinquishing and waiving intellectual property rights, including copyright and database rights, for use by the global community. Because of this feature of intellectual property law, this document first relinquishes the rights and waives the relevant rights and claims. It then goes on to license these same rights for jurisdictions or areas of law that may make it difficult to relinquish or waive rights or claims.
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
The purpose of this document is to enable rightsholders to place their work into the public domain. Unlike licences for free and open source software, free cultural works, or open content licences, rightsholders will not be able to “dual license” their work by releasing the same work under different licences. This is because they have allowed anyone to use the work in whatever way they choose. Rightsholders therefore can’t re-license it under copyright or database rights on different terms because they have nothing left to license. Doing so creates truly accessible data to build rich applications and advance the progress of science and the arts.
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
This document can cover either or both of the database and its contents (the data). Because databases can have a wide variety of content – not just factual data – rightsholders should use the Open Data Commons – Public Domain Dedication & Licence for an entire database and its contents only if everything can be placed under the terms of this document. Because even factual data can sometimes have intellectual property rights, rightsholders should use this licence to cover both the database and its factual data when making material available under this document; even if it is likely that the data would not be covered by copyright or database rights.
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
Rightsholders can also use this document to cover any copyright or database rights claims over only a database, and leave the contents to be covered by other licences or documents. They can do this because this document refers to the “Work”, which can be either – or both – the database and its contents. As a result, rightsholders need to clearly state what they are dedicating under this document when they dedicate it.
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
Just like any licence or other document dealing with intellectual property, rightsholders should be aware that one can only license what one owns. Please ensure that the rights have been cleared to make this material available under this document.
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
This document permanently and irrevocably makes the Work available to the public for any use of any kind, and it should not be used unless the rightsholder is prepared for this to happen.
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
Part I: Introduction
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
The Rightsholder (the Person holding rights or claims over the Work) agrees as follows:
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
1.0 Definitions of Capitalised Words
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
“Copyright” – Includes rights under copyright and under neighbouring rights and similarly related sets of rights under the law of the relevant jurisdiction under Section 6.4.
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
“Data” – The contents of the Database, which includes the information, independent works, or other material collected into the Database offered under the terms of this Document.
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
“Database” – A collection of Data arranged in a systematic or methodical way and individually accessible by electronic or other means offered under the terms of this Document.
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
“Database Right” – Means rights over Data resulting from the Chapter III (“sui generis”) rights in the Database Directive (Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases) and any future updates as well as any similar rights available in the relevant jurisdiction under Section 6.4.
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
“Document” – means this relinquishment and waiver of rights and claims and back up licence agreement.
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
“Person” – Means a natural or legal person or a body of persons corporate or incorporate.
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
“Use” – As a verb, means doing any act that is restricted by Copyright or Database Rights whether in the original medium or any other; and includes modifying the Work as may be technically necessary to use it in a different mode or format. This includes the right to sublicense the Work.
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
“Work” – Means either or both of the Database and Data offered under the terms of this Document.
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
“You” – the Person acquiring rights under the licence elements of this Document.
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
Words in the singular include the plural and vice versa.
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
2.0 What this document covers
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
2.1. Legal effect of this Document. This Document is:
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
a. A dedication to the public domain and waiver of Copyright and Database Rights over the Work; and
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
b. A licence of Copyright and Database Rights over the Work in jurisdictions that do not allow for relinquishment or waiver.
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
2.2. Legal rights covered.
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
a. Copyright. Any copyright or neighbouring rights in the Work. Copyright law varies between jurisdictions, but is likely to cover: the Database model or schema, which is the structure, arrangement, and organisation of the Database, and can also include the Database tables and table indexes; the data entry and output sheets; and the Field names of Data stored in the Database. Copyright may also cover the Data depending on the jurisdiction and type of Data; and
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
b. Database Rights. Database Rights only extend to the extraction and re-utilisation of the whole or a substantial part of the Data. Database Rights can apply even when there is no copyright over the Database. Database Rights can also apply when the Data is removed from the Database and is selected and arranged in a way that would not infringe any applicable copyright.
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
2.2 Rights not covered.
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
a. This Document does not apply to computer programs used in the making or operation of the Database;
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
b. This Document does not cover any patents over the Data or the Database. Please see Section 4.2 later in this Document for further details; and
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
c. This Document does not cover any trade marks associated with the Database. Please see Section 4.3 later in this Document for further details.
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
Users of this Database are cautioned that they may have to clear other rights or consult other licences.
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
2.3 Facts are free. The Rightsholder takes the position that factual information is not covered by Copyright. This Document however covers the Work in jurisdictions that may protect the factual information in the Work by Copyright, and to cover any information protected by Copyright that is contained in the Work.
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
Part II: Dedication to the public domain
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
3.0 Dedication, waiver, and licence of Copyright and Database Rights
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
3.1 Dedication of Copyright and Database Rights to the public domain. The Rightsholder by using this Document, dedicates the Work to the public domain for the benefit of the public and relinquishes all rights in Copyright and Database Rights over the Work.
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
a. The Rightsholder realises that once these rights are relinquished, that the Rightsholder has no further rights in Copyright and Database Rights over the Work, and that the Work is free and open for others to Use.
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
b. The Rightsholder intends for their relinquishment to cover all present and future rights in the Work under Copyright and Database Rights, whether they are vested or contingent rights, and that this relinquishment of rights covers all their heirs and successors.
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
The above relinquishment of rights applies worldwide and includes media and formats now known or created in the future.
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
3.2 Waiver of rights and claims in Copyright and Database Rights when Section 3.1 dedication inapplicable. If the dedication in Section 3.1 does not apply in the relevant jurisdiction under Section 6.4, the Rightsholder waives any rights and claims that the Rightsholder may have or acquire in the future over the Work in:
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
a. Copyright; and
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
b. Database Rights.
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
To the extent possible in the relevant jurisdiction, the above waiver of rights and claims applies worldwide and includes media and formats now known or created in the future. The Rightsholder agrees not to assert the above rights and waives the right to enforce them over the Work.
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
3.3 Licence of Copyright and Database Rights when Sections 3.1 and 3.2 inapplicable. If the dedication and waiver in Sections 3.1 and 3.2 does not apply in the relevant jurisdiction under Section 6.4, the Rightsholder and You agree as follows:
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
a. The Licensor grants to You a worldwide, royalty-free, non-exclusive, licence to Use the Work for the duration of any applicable Copyright and Database Rights. These rights explicitly include commercial use, and do not exclude any field of endeavour. To the extent possible in the relevant jurisdiction, these rights may be exercised in all media and formats whether now known or created in the future.
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
3.4 Moral rights. This section covers moral rights, including the right to be identified as the author of the Work or to object to treatment that would otherwise prejudice the author’s honour and reputation, or any other derogatory treatment:
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
a. For jurisdictions allowing waiver of moral rights, Licensor waives all moral rights that Licensor may have in the Work to the fullest extent possible by the law of the relevant jurisdiction under Section 6.4;
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
b. If waiver of moral rights under Section 3.4 a in the relevant jurisdiction is not possible, Licensor agrees not to assert any moral rights over the Work and waives all claims in moral rights to the fullest extent possible by the law of the relevant jurisdiction under Section 6.4; and
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
c. For jurisdictions not allowing waiver or an agreement not to assert moral rights under Section 3.4 a and b, the author may retain their moral rights over the copyrighted aspects of the Work.
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
Please note that some jurisdictions do not allow for the waiver of moral rights, and so moral rights may still subsist over the work in some jurisdictions.
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
4.0 Relationship to other rights
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
4.1 No other contractual conditions. The Rightsholder makes this Work available to You without any other contractual obligations, either express or implied. Any Community Norms statement associated with the Work is not a contract and does not form part of this Document.
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
4.2 Relationship to patents. This Document does not grant You a licence for any patents that the Rightsholder may own. Users of this Database are cautioned that they may have to clear other rights or consult other licences.
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
4.3 Relationship to trade marks. This Document does not grant You a licence for any trade marks that the Rightsholder may own or that the Rightsholder may use to cover the Work. Users of this Database are cautioned that they may have to clear other rights or consult other licences.
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
Part III: General provisions
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
5.0 Warranties, disclaimer, and limitation of liability
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
5.1 The Work is provided by the Rightsholder “as is” and without any warranty of any kind, either express or implied, whether of title, of accuracy or completeness, of the presence of absence of errors, of fitness for purpose, or otherwise. Some jurisdictions do not allow the exclusion of implied warranties, so this exclusion may not apply to You.
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
5.2 Subject to any liability that may not be excluded or limited by law, the Rightsholder is not liable for, and expressly excludes, all liability for loss or damage however and whenever caused to anyone by any use under this Document, whether by You or by anyone else, and whether caused by any fault on the part of the Rightsholder or not. This exclusion of liability includes, but is not limited to, any special, incidental, consequential, punitive, or exemplary damages. This exclusion applies even if the Rightsholder has been advised of the possibility of such damages.
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
5.3 If liability may not be excluded by law, it is limited to actual and direct financial loss to the extent it is caused by proved negligence on the part of the Rightsholder.
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
6.0 General
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
6.1 If any provision of this Document is held to be invalid or unenforceable, that must not affect the validity or enforceability of the remainder of the terms of this Document.
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
6.2 This Document is the entire agreement between the parties with respect to the Work covered here. It replaces any earlier understandings, agreements or representations with respect to the Work not specified here.
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
6.3 This Document does not affect any rights that You or anyone else may independently have under any applicable law to make any use of this Work, including (for jurisdictions where this Document is a licence) fair dealing, fair use, database exceptions, or any other legally recognised limitation or exception to infringement of copyright or other applicable laws.
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
6.4 This Document takes effect in the relevant jurisdiction in which the Document terms are sought to be enforced. If the rights waived or granted under applicable law in the relevant jurisdiction includes additional rights not waived or granted under this Document, these additional rights are included in this Document in order to meet the intent of this Document.
|
MEASURES.xlsx
ADDED
|
Binary file (9.63 kB). View file
|
|
|
ONOFF.mat
ADDED
|
Binary file (265 Bytes). View file
|
|
|
PD_RewP_Script.m
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
%%
|
| 2 |
+
|
| 3 |
+
% N=28 Parkinson's patients and N=28 matched controls
|
| 4 |
+
% PD patients came in for 2 sessions 1 week apart: ON or OFF meds (counterbalanced).
|
| 5 |
+
% EEG files are labeled with session #, see ONOFF.mat for which session was ON or OFF.
|
| 6 |
+
% Note that controls DID NOT have 2 sessions.
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
clear all; clc
|
| 10 |
+
homedir='Y:\EEG_Data\PDDys\PD 4 PREDICT\';
|
| 11 |
+
datalocation=[homedir,'\PROCESSED EEG DATA\']; % Data are here
|
| 12 |
+
savepath = [datalocation,'CLEAN\'];
|
| 13 |
+
cd(datalocation);
|
| 14 |
+
|
| 15 |
+
load([homedir,'VV_Behavior.mat']); % Aggregate behavior files output from Matlab Psychtoolbox
|
| 16 |
+
load([homedir,'ONOFF.mat']); % 3 columns: subject, session, [ON=1 OFF=0]
|
| 17 |
+
load([homedir,'BV_Chanlocs_60.mat']);
|
| 18 |
+
%*************************************
|
| 19 |
+
|
| 20 |
+
MEASURES = xlsread([homedir,'MEASURES']); % Subj symptom measures taken in ON session
|
| 21 |
+
%************************
|
| 22 |
+
% COLUMN LABELS
|
| 23 |
+
% MEASURES(:,1) = PD IDx
|
| 24 |
+
% MEASURES(:,2) = NAART Scores
|
| 25 |
+
% MEASURES(:,3) = BDI Ratings
|
| 26 |
+
% MEASURES(:,4) = MMSE Scores
|
| 27 |
+
% MEASURES(:,5) = UPDRS Ratings
|
| 28 |
+
% MEASURES(:,6) = Years Since Diagnosis (Rank Ordered)
|
| 29 |
+
% MEASURES(:,7) = Levadopa Equivalent Dose (LED)
|
| 30 |
+
% MEASURES(:,8) = Accelerometer hand placement: 1 = Left Hand // 2 = Right hand
|
| 31 |
+
%************************
|
| 32 |
+
|
| 33 |
+
% Subject Numbers
|
| 34 |
+
PDsx=[801:811,813:829];
|
| 35 |
+
CTLsx=[8010,8070,8060,890:914];
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
%% MAKE ERPs
|
| 39 |
+
for subj=[PDsx,CTLsx]
|
| 40 |
+
for session=1:2;
|
| 41 |
+
if (subj>850 && session==1) || subj<850 % If not CTL, do session 2 (CTL did not have a session 2)
|
| 42 |
+
|
| 43 |
+
load([num2str(subj),'_Session_',num2str(session),'_PDDys_VV_withcueinfo.mat'],'EEG','bad_chans','bad_epochs','bad_ICAs');
|
| 44 |
+
|
| 45 |
+
for ai=1:size(EEG.epoch,2)
|
| 46 |
+
VECTOR(ai,1)=EEG.epoch(ai).FB;
|
| 47 |
+
VECTOR(ai,2)=EEG.epoch(ai).Resp;
|
| 48 |
+
VECTOR(ai,3)=EEG.epoch(ai).Resptime;
|
| 49 |
+
VECTOR(ai,4)=EEG.epoch(ai).Stim;
|
| 50 |
+
VECTOR(ai,5)=EEG.epoch(ai).Stimtime;
|
| 51 |
+
VECTOR(ai,6)=EEG.epoch(ai).Cie;
|
| 52 |
+
VECTOR(ai,7)=EEG.epoch(ai).Cuetime;
|
| 53 |
+
VECTOR(ai,8)=EEG.epoch(ai).RT;
|
| 54 |
+
VECTOR(ai,9)=EEG.epoch(ai).BEHCondi;
|
| 55 |
+
VECTOR(ai,10)=EEG.epoch(ai).BEHOptimal;
|
| 56 |
+
VECTOR(ai,11)=EEG.epoch(ai).BEHRT;
|
| 57 |
+
VECTOR(ai,12)=EEG.epoch(ai).BEHFB;
|
| 58 |
+
end
|
| 59 |
+
% Remove practice trials
|
| 60 |
+
VECTOR(isnan(VECTOR(:,9)),:)=NaN;
|
| 61 |
+
% Add this for later: FB-parsed by condi
|
| 62 |
+
for vvi=1:length(VECTOR),
|
| 63 |
+
if VECTOR(vvi,1)==0, VECTOR(vvi,13)=VECTOR(vvi,9);
|
| 64 |
+
elseif VECTOR(vvi,1)==1, VECTOR(vvi,13)=4+VECTOR(vvi,9);
|
| 65 |
+
end
|
| 66 |
+
end
|
| 67 |
+
|
| 68 |
+
% Remove the bad ICAs identified by APPLE:
|
| 69 |
+
bad_ICAs_To_Remove=bad_ICAs{2};
|
| 70 |
+
EEG = pop_subcomp( EEG, bad_ICAs_To_Remove, 0);
|
| 71 |
+
|
| 72 |
+
% low-pass filter for display
|
| 73 |
+
dims=size(EEG.data);
|
| 74 |
+
EEG.data=eegfilt(EEG.data,500,[],20);
|
| 75 |
+
EEG.data=reshape(EEG.data,dims(1),dims(2),dims(3));
|
| 76 |
+
|
| 77 |
+
% Set times
|
| 78 |
+
tx=-6000:2:1998;
|
| 79 |
+
b1=find(tx==-200); b2=find(tx==0);
|
| 80 |
+
t1=find(tx==-500); t2=find(tx==1000); % For ERPs
|
| 81 |
+
r1=find(tx==250); r2=find(tx==450); % For Topos
|
| 82 |
+
tx2disp=-500:2:1000;
|
| 83 |
+
|
| 84 |
+
% Accelerometer was worn on the non-dominant hand
|
| 85 |
+
% Aggregate accelerometer data
|
| 86 |
+
EEG.X=EEG.X-repmat(mean(EEG.X),4000,1);
|
| 87 |
+
EEG.Y=EEG.Y-repmat(mean(EEG.Y),4000,1);
|
| 88 |
+
EEG.Z=EEG.Z-repmat(mean(EEG.Z),4000,1);
|
| 89 |
+
% Add to EEG.data as 61st channel - but not the rejected trials
|
| 90 |
+
EEG.data(61,:,:)=(EEG.X(:,bad_epochs{1}~=1).^2)+(EEG.Y(:,bad_epochs{1}~=1).^2)+(EEG.Z(:,bad_epochs{1}~=1).^2);
|
| 91 |
+
dims=size(EEG.data);
|
| 92 |
+
|
| 93 |
+
% Basecor your ERPs here so they are pretty.
|
| 94 |
+
BASE1=squeeze( mean(EEG.data(:,b1:b2,:),2) );
|
| 95 |
+
for chani=1:dims(1)-1 % don't basecor the tremor data
|
| 96 |
+
DATA(chani,:,:)=squeeze(EEG.data(chani,:,:))-repmat( BASE1(chani,:),dims(2),1 );
|
| 97 |
+
end
|
| 98 |
+
|
| 99 |
+
% Parse by condition
|
| 100 |
+
%************************
|
| 101 |
+
% CONDITIONS
|
| 102 |
+
% 1 = CHOOSE EASY LOSE
|
| 103 |
+
% 2 = CHOOSE HARD LOSE
|
| 104 |
+
% 3 = MATCH EASY LOSE
|
| 105 |
+
% 4 = MATCH HARD LOSE
|
| 106 |
+
% 5 = CHOOSE EASY WIN
|
| 107 |
+
% 6 = CHOOSE HARD WIN
|
| 108 |
+
% 7 = MATCH EASY WIN
|
| 109 |
+
% 8 = MATCH HARD WIN
|
| 110 |
+
%************************
|
| 111 |
+
for ai=1:8 % all FB
|
| 112 |
+
ERP(:,ai,:)=mean(DATA(:,t1:t2,VECTOR(:,13)==ai),3); % DATA(ELECTRODE, TIME , CONDITION)
|
| 113 |
+
TOPO(:,ai) = squeeze(mean(mean(DATA(:,r1:r2,VECTOR(:,13)==ai),2),3));
|
| 114 |
+
end
|
| 115 |
+
|
| 116 |
+
% Save and move on to next
|
| 117 |
+
save([savepath,num2str(subj),'_Session_',num2str(session),'_PDDys_VV_withcueinfo_ALL_THE_GOODS.mat'],'ERP','TOPO','VECTOR');
|
| 118 |
+
|
| 119 |
+
clc;
|
| 120 |
+
disp(['AND PARTICPANT ',num2str(subj),' HAS BEEN SAVED']);
|
| 121 |
+
|
| 122 |
+
clearvars -except datalocation ONOFF VV_Behavior BV_Chanlocs_60 PDsx CTLsx session subj savepath;
|
| 123 |
+
close all;
|
| 124 |
+
|
| 125 |
+
end
|
| 126 |
+
end
|
| 127 |
+
end
|
| 128 |
+
|
| 129 |
+
%% COMBINE ERPS
|
| 130 |
+
|
| 131 |
+
site = [21,36];% Cz FCz
|
| 132 |
+
tx=-500:2:1000;
|
| 133 |
+
time1 = 250; time2 = 450;
|
| 134 |
+
t1=find(tx==time1); t2=find(tx==time2); % FOR REW-P
|
| 135 |
+
TIME = time2-time1;
|
| 136 |
+
tx2disp=-500:2:1000;
|
| 137 |
+
COLS={'r','b','g','k'};
|
| 138 |
+
|
| 139 |
+
BigN=size(ONOFF,1)./2;
|
| 140 |
+
|
| 141 |
+
row=1;
|
| 142 |
+
for mi=1:size(ONOFF,1)
|
| 143 |
+
disp([num2str(ONOFF(mi,1)),'_Session_',num2str(ONOFF(mi,2)),'_PDDys_VV_withcueinfo_ALL_THE_GOODS.mat']);
|
| 144 |
+
load([savepath,num2str(ONOFF(mi,1)),'_Session_',num2str(ONOFF(mi,2)),'_PDDys_VV_withcueinfo_ALL_THE_GOODS.mat']);
|
| 145 |
+
|
| 146 |
+
if ONOFF(mi,3)==1 % ON
|
| 147 |
+
ON.ID(floor(row))=ONOFF(mi,1);
|
| 148 |
+
ON.Session(floor(row))=ONOFF(mi,2);
|
| 149 |
+
ON.VECTOR=VECTOR;
|
| 150 |
+
ON.ERPs(floor(row),:,:)=squeeze(mean(ERP(site,:,:),1));
|
| 151 |
+
ON.Topos(floor(row),:,:)=TOPO(:,:);
|
| 152 |
+
elseif ONOFF(mi,3)==0 % OFF
|
| 153 |
+
OFF.ID(floor(row))=ONOFF(mi,1);
|
| 154 |
+
OFF.Session(floor(row))=ONOFF(mi,2);
|
| 155 |
+
OFF.VECTOR=VECTOR;
|
| 156 |
+
OFF.ERPs(floor(row),:,:)=squeeze(mean(ERP(site,:,:),1));
|
| 157 |
+
OFF.Topos(floor(row),:,:)=TOPO(:,:);
|
| 158 |
+
end
|
| 159 |
+
row=row+.5;
|
| 160 |
+
clear ERPs VECTOR;
|
| 161 |
+
end
|
| 162 |
+
|
| 163 |
+
row=1;
|
| 164 |
+
for CTLi=[8010,8060,8070,890:914];
|
| 165 |
+
disp([num2str(CTLi),'_Session_1_PDDys_VV_withcueinfo_ALL_THE_GOODS.mat']);
|
| 166 |
+
load([savepath,num2str(CTLi),'_Session_1_PDDys_VV_withcueinfo_ALL_THE_GOODS.mat']);
|
| 167 |
+
CTL.ID(floor(row))=CTLi;
|
| 168 |
+
CTL.Session(floor(row))=1;
|
| 169 |
+
CTL.VECTOR=VECTOR;
|
| 170 |
+
CTL.ERPs(floor(row),:,:)=squeeze(mean(ERP(site,:,:),1));
|
| 171 |
+
CTL.Topos(floor(row),:,:)=TOPO(:,:);
|
| 172 |
+
|
| 173 |
+
row=row+1;
|
| 174 |
+
clear ERPs VECTOR;
|
| 175 |
+
end
|
| 176 |
+
CtlN=row-1;
|
| 177 |
+
|
| 178 |
+
%************************
|
| 179 |
+
% TOPOS
|
| 180 |
+
%************************
|
| 181 |
+
TOPO_CON = (CTL.Topos(:,:,5)+CTL.Topos(:,:,6)+CTL.Topos(:,:,7)+CTL.Topos(:,:,8) )/4;
|
| 182 |
+
TOPO_ON = (ON.Topos(:,:,5)+ON.Topos(:,:,6)+ON.Topos(:,:,7)+ON.Topos(:,:,8) )/4;
|
| 183 |
+
TOPO_OFF = (OFF.Topos(:,:,5)+OFF.Topos(:,:,6)+OFF.Topos(:,:,7)+OFF.Topos(:,:,8) )/4;
|
| 184 |
+
|
| 185 |
+
figure; hold on
|
| 186 |
+
|
| 187 |
+
% CONTROL TOPO
|
| 188 |
+
subplot(1,3,1)
|
| 189 |
+
topoplot(mean(TOPO_CON,1),BV_Chanlocs_60);
|
| 190 |
+
title('CONTROL');
|
| 191 |
+
set(gca,'clim',[-3 3]);
|
| 192 |
+
|
| 193 |
+
% ON TOPO
|
| 194 |
+
subplot(1,3,2)
|
| 195 |
+
topoplot(mean(TOPO_ON,1),BV_Chanlocs_60);
|
| 196 |
+
title('ON');
|
| 197 |
+
set(gca,'clim',[-3 3]);
|
| 198 |
+
|
| 199 |
+
% OFF TOPO
|
| 200 |
+
subplot(1,3,3)
|
| 201 |
+
topoplot(mean(TOPO_OFF,1),BV_Chanlocs_60);
|
| 202 |
+
title('OFF');
|
| 203 |
+
set(gca,'clim',[-3 3]);
|
| 204 |
+
cbar
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
%************************
|
| 208 |
+
% ERP
|
| 209 |
+
%************************
|
| 210 |
+
win_CON = (CTL.ERPs(:,5,:)+CTL.ERPs(:,6,:)+CTL.ERPs(:,7,:)+CTL.ERPs(:,8,:))/4;
|
| 211 |
+
win_ON = (ON.ERPs(:,5,:)+ON.ERPs(:,6,:)+ON.ERPs(:,7,:)+ON.ERPs(:,8,:))/4;
|
| 212 |
+
win_OFF = (OFF.ERPs(:,5,:)+OFF.ERPs(:,6,:)+OFF.ERPs(:,7,:)+OFF.ERPs(:,8,:))/4;
|
| 213 |
+
|
| 214 |
+
lose_CON = (CTL.ERPs(:,:,1)+CTL.ERPs(:,:,2)+CTL.ERPs(:,:,3)+CTL.ERPs(:,:,4))/4;
|
| 215 |
+
lose_ON = (ON.ERPs(:,:,1)+ON.ERPs(:,:,2)+ON.ERPs(:,:,3)+ON.ERPs(:,:,4))/4;
|
| 216 |
+
lose_OFF = (OFF.ERPs(:,:,1)+OFF.ERPs(:,:,2)+OFF.ERPs(:,:,3)+OFF.ERPs(:,:,4))/4;
|
| 217 |
+
|
| 218 |
+
figure;hold on;
|
| 219 |
+
rectangle('Position',[time1,0,TIME,3],'Curvature',0.1,'FaceColor',[.9 .9 .9])% ON WIN
|
| 220 |
+
plot(tx2disp,squeeze(nanmean(win_CON,1)),COLS{1});
|
| 221 |
+
plot(tx2disp,squeeze(nanmean(win_ON,1)),COLS{2});
|
| 222 |
+
plot(tx2disp,squeeze(nanmean(win_OFF,1)),COLS{3});
|
| 223 |
+
shadedErrorBar(tx2disp, squeeze(nanmean(win_CON,1)), nanstd(squeeze(win_CON)) ./sqrt(28),COLS{1})
|
| 224 |
+
shadedErrorBar(tx2disp, squeeze(nanmean(win_ON,1)), nanstd(squeeze(win_ON)) ./sqrt(28),COLS{2})
|
| 225 |
+
shadedErrorBar(tx2disp, squeeze(nanmean(win_OFF,1)), nanstd(squeeze(win_OFF)) ./sqrt(28),COLS{3})
|
| 226 |
+
plot(tx2disp,squeeze(nanmean(win_CON,1)),COLS{1},'LineWidth',4);
|
| 227 |
+
plot(tx2disp,squeeze(nanmean(win_ON,1)),COLS{2},'LineWidth',4);
|
| 228 |
+
plot(tx2disp,squeeze(nanmean(win_OFF,1)),COLS{3},'LineWidth',4);
|
| 229 |
+
|
| 230 |
+
title('ERPs FOR WINS');
|
| 231 |
+
h_legend=legend({'HC','ON','OFF'});
|
| 232 |
+
set(h_legend,'FontSize',12);
|
| 233 |
+
plot([0 0],[-6 6],'k:');
|
| 234 |
+
set(gca,'ylim',[-1 4],'xlim',[-100 1000])
|
| 235 |
+
pcrit=.05;
|
| 236 |
+
[H,P,CI,STATS]=ttest(win_CON,win_ON);
|
| 237 |
+
P(P>pcrit)=NaN; P(P<=pcrit)=1;
|
| 238 |
+
plot(tx2disp,-.5*squeeze(P),'k','linewidth',3); clear H P CI STATS;
|
| 239 |
+
[H,P,CI,STATS]=ttest(win_CON,win_OFF);
|
| 240 |
+
P(P>pcrit)=NaN; P(P<=pcrit)=1;
|
| 241 |
+
plot(tx2disp,-.7*squeeze(P),'r','linewidth',3); clear H P CI STATS;
|
| 242 |
+
|
| 243 |
+
CONTROL_ERP = squeeze(mean(win_CON(:,:,t1:t2),3));
|
| 244 |
+
ON_ERP = squeeze(mean(win_ON(:,:,t1:t2),3));
|
| 245 |
+
OFF_ERP = squeeze(mean(win_OFF(:,:,t1:t2),3));
|
| 246 |
+
|
| 247 |
+
[H,P,CI,STATS]=ttest(CONTROL_ERP,ON_ERP)
|
| 248 |
+
text(.7,3.5,['CONTROL v. ON t= ',num2str(STATS.tstat),' p= ',num2str(P)])
|
| 249 |
+
[H,P,CI,STATS]=ttest(CONTROL_ERP,OFF_ERP)
|
| 250 |
+
text(.7,3.3,['CONTROL v. OFF t= ',num2str(STATS.tstat),' p= ',num2str(P)])
|
| 251 |
+
[H,P,CI,STATS]=ttest(ON_ERP,OFF_ERP)
|
| 252 |
+
text(.7,3.1,['ON v. OFF t= ',num2str(STATS.tstat),' p= ',num2str(P)])
|
| 253 |
+
|
| 254 |
+
%************************
|
| 255 |
+
% FOR ANALYSIS
|
| 256 |
+
%************************
|
| 257 |
+
% Run these in SPSS to determine that there's no interaction between group
|
| 258 |
+
% and volition / difficulty
|
| 259 |
+
for condi=1:8
|
| 260 |
+
SPSS_CONT(:,condi)= squeeze(nanmean(CTL.ERPs(:,condi,t1:t2),3));
|
| 261 |
+
SPSS_ON(:,condi)= squeeze(nanmean(ON.ERPs(:,condi,t1:t2),3));
|
| 262 |
+
SPSS_OFF(:,condi)= squeeze(nanmean(OFF.ERPs(:,condi,t1:t2),3));
|
| 263 |
+
end
|
| 264 |
+
|
| 265 |
+
% So then combine all rewards across volition and difficulty conditions
|
| 266 |
+
REWP_ON = [SPSS_ON(:,5),SPSS_ON(:,6),SPSS_ON(:,7),SPSS_ON(:,8)];
|
| 267 |
+
REWP_OFF = [SPSS_OFF(:,5),SPSS_OFF(:,6),SPSS_OFF(:,7),SPSS_OFF(:,8)];
|
| 268 |
+
|
| 269 |
+
ALL_REWP_ON = mean(REWP_ON,2);
|
| 270 |
+
ALL_REWP_OFF = mean(REWP_OFF,2);
|
| 271 |
+
|
| 272 |
+
%************************
|
| 273 |
+
% CORRELATIONS
|
| 274 |
+
%************************
|
| 275 |
+
YrsDx=tiedrank(MEASURES(:,6),1);
|
| 276 |
+
|
| 277 |
+
figure;
|
| 278 |
+
hold on;
|
| 279 |
+
subplot(2,1,1)
|
| 280 |
+
scatter(YrsDx,ALL_REWP_ON,'MarkerEdgeColor',[0 .5 .5],...
|
| 281 |
+
'MarkerFaceColor',[0 .7 .7],...
|
| 282 |
+
'LineWidth',1.5)
|
| 283 |
+
lsline
|
| 284 |
+
title('ON: REW-P v. YRS DIAGNOSED ')
|
| 285 |
+
set(gca,'ylim',[-2 5])
|
| 286 |
+
[RHO,PVAL] = corr(ALL_REWP_ON,MEASURES(:,6),'TYPE','Spearman');
|
| 287 |
+
text(.7,4,['r= ',num2str(RHO),' p= ',num2str(PVAL)])
|
| 288 |
+
|
| 289 |
+
subplot(2,1,2)
|
| 290 |
+
hold on;
|
| 291 |
+
scatter(YrsDx,ALL_REWP_OFF,'MarkerEdgeColor',[0 .5 .5],...
|
| 292 |
+
'MarkerFaceColor',[0 .7 .7],...
|
| 293 |
+
'LineWidth',1.5)
|
| 294 |
+
lsline
|
| 295 |
+
title('OFF: REW-P v. YRS DIAGNOSED ')
|
| 296 |
+
set(gca,'ylim',[-2 5])
|
| 297 |
+
[RHO,PVAL] = corr(ALL_REWP_OFF,MEASURES(:,6),'TYPE','Spearman');
|
| 298 |
+
text(.7,4,['r= ',num2str(RHO),' p= ',num2str(PVAL)])
|
| 299 |
+
|
| 300 |
+
%%
|
| 301 |
+
|
README.md
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: pddl
|
| 3 |
+
tags:
|
| 4 |
+
- eeg
|
| 5 |
+
- medical
|
| 6 |
+
- clinical
|
| 7 |
+
- classification
|
| 8 |
+
- parkinson
|
| 9 |
+
- reward processing
|
| 10 |
+
---
|
| 11 |
+
# Brown2020: EEG Parkinson's Classification Dataset with Reward Processing Task
|
| 12 |
+
The Brown2020 dataset comprises EEG recordings from a reinforcement learning task aimed at assessing reward processing in individuals with Parkinson's disease (PD) and healthy controls. A total of 56 participants took part: 28 individuals diagnosed with PD and 28 age- and sex-matched control participants. Each PD participant completed two sessions (ON and OFF dopaminergic medication), spaced one week apart. Control participants completed a single session.
|
| 13 |
+
|
| 14 |
+
Participants performed a reinforcement learning task involving probabilistic feedback. On each trial, a pair of colored stimuli was presented, with each stimulus associated with a predefined probability of reward. Conditions were manipulated along two dimensions: difficulty (90/10% vs. 70/30% reward probability) and volition (free choice vs. instructed choice). The EEG was time-locked to the feedback screen, allowing for the measurement of reward-related event-related potentials (ERPs).
|
| 15 |
+
|
| 16 |
+
EEG data were recorded using a 64-channel Brain Vision system at a sampling rate of 500 Hz.
|
| 17 |
+
## Paper
|
| 18 |
+
Brown, D. R., Richardson, S. P., & Cavanagh, J. F. (2020). **An EEG marker of reward processing is diminished in Parkinson’s disease**. _Brain research_, 1727, 146541.
|
| 19 |
+
|
| 20 |
+
DISCLAIMER: We (DISCO) are NOT the owners or creators of this dataset, but we merely uploaded it here, to support our's ("EEG-Bench") and other's work on EEG benchmarking.
|
| 21 |
+
## Dataset Structure
|
| 22 |
+
- `data/` contains the annotated experiment EEG data.
|
| 23 |
+
- `MEASURES.xlsx` and `ONOFF.mat` contain subject-specific information like NAART test results, BDI and whether they were ON or OFF medication at their first visit (`ONOFF.mat`). See `PD_RewP_Script.m` for information on how to decode these files.
|
| 24 |
+
- `scripts/` contains the MATLAB files used to execute the experiment.
|
| 25 |
+
- `images/` contains the stimuli and visuals presented to the patients.
|
| 26 |
+
|
| 27 |
+
### Filename Format
|
| 28 |
+
```
|
| 29 |
+
[PID]_Session_[SESSION]_PDDys_VV_withcueinfo.mat
|
| 30 |
+
```
|
| 31 |
+
PID is the patient ID (e.g. `801`), while SESSION distinguishes different days of recording (can be `1` or `2` for patients with PD and is always `1` for patients without PD). All patients with PID <= 829 have Parkinson's Disease and all patients with PID >= 890 do NOT have Parkinson's Disease and hence belong to the control group.
|
| 32 |
+
|
| 33 |
+
### Fields in each File
|
| 34 |
+
A `.mat` file can be read in python as follows:
|
| 35 |
+
```python
|
| 36 |
+
from scipy.io import loadmat
|
| 37 |
+
filename = "801_Session_2_PDDys_VV_withcueinfo.mat"
|
| 38 |
+
mat = loadmat(filename, simplify_cells=True)
|
| 39 |
+
```
|
| 40 |
+
(A field "fieldname" can be read from `mat` as `mat["fieldname"]`.)
|
| 41 |
+
|
| 42 |
+
Then `mat` contains (among others) the following fields and subfields
|
| 43 |
+
- `EEG`
|
| 44 |
+
- `data`: EEG data of shape `(#channels, trial_len, #trials)`. E.g. a recording of 119 trials/epochs with 60 channels, each trial having a duration of 8 seconds and a sampling rate of 500 Hz will have shape `(60, 4000, 119)`.
|
| 45 |
+
- `event`: Contains a list of dictionaries, each entry (each event) having the following description:
|
| 46 |
+
- `latency`: The onset of the event, measured as the index in the merged time-dimension `#trials x trial_len` (note `#trials` being the _outer_ and `trial_len` being the _inner_ array when merging).
|
| 47 |
+
- `type`: The type of event. It can be either:
|
| 48 |
+
- `"S 1"`: An instruction to freely choose a stimulus is shown
|
| 49 |
+
- `"S 2"`: An instruction to select the stimulus with a box around it is shown
|
| 50 |
+
- `"S 3"`: A stimulus pair is shown on the screen
|
| 51 |
+
- `"S 4"`: The patient presses the left button
|
| 52 |
+
- `"S 5"`: The patient presses the right button
|
| 53 |
+
- `"S 6"`: A message is shown that the button pressed by the patient did not match the stimulus with a box around it (perhaps this event is also shown when the button is pressed too early)
|
| 54 |
+
- `"S 7"`: A message is shown that the patient did not press any button in the required time-interval (4 seconds)
|
| 55 |
+
- `"S 10"`: A red `0` (representing "no reward") is shown on the screen
|
| 56 |
+
- `"S 11"`: A green `1` (representing "a reward of 1 point") is shown on the screen
|
| 57 |
+
|
| 58 |
+
Typically, a trial starts with an instruction (`S 1` or `S 2`), followed by a pair of stimuli shown on the screen (`S 3`), a button being pressed by the patient (`S 4` or `S 5`) and a reward being displayed (`S 10` or `S 11`).
|
| 59 |
+
- `chanlocs`: A list of channel descriptors
|
| 60 |
+
- `nbchan`: Number of channels
|
| 61 |
+
- `trials`: Number of trials/epochs in this recording
|
| 62 |
+
- `srate`: Sampling Rate (Hz)
|
| 63 |
+
|
| 64 |
+
Additionally, the field and `bad_chans` lists bad channels of this recording.
|
| 65 |
+
|
| 66 |
+
## License
|
| 67 |
+
By the original authors of this work, this work has been licensed under the PDDL v1.0 license (see LICENSE.txt).
|
data/8010_Session_1_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:638799eee50920e257400315d55b0a5c08d4c45e9a184d04cd57397844354261
|
| 3 |
+
size 200582802
|
data/801_Session_1_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c947b61a939cded729c79800d82d856bf2dea7a73534793189493e6c49d030a
|
| 3 |
+
size 335257113
|
data/801_Session_2_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea347d0285f8d62b3338b32812204c817f58d4b5bc83f396ba824d6e389ee3fd
|
| 3 |
+
size 175853993
|
data/802_Session_1_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1190627744f50d293385918f259b4698c359d875f09343f8955098b2ded0ea74
|
| 3 |
+
size 206037682
|
data/802_Session_2_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9a5d0e4405401b222e32f17ac15f941bebf7b8ec04f9499fe558ff1e47685864
|
| 3 |
+
size 203584993
|
data/803_Session_1_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d627dba9d61950c8a14e073b6850c05b889467fec976e730416099e4ee998cb3
|
| 3 |
+
size 213434858
|
data/803_Session_2_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65ac4781082928fe1a70a30371cf3d1ec203476b86a1eb9d8d2c3758297b00eb
|
| 3 |
+
size 203329761
|
data/804_Session_1_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6afcdefa35d32f8ad78f744c993aa6fd75122d6c6683f2ce5611892aeeea7ac6
|
| 3 |
+
size 207272937
|
data/804_Session_2_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4de34c587bbe3e40208550b50374ae9df2eef4149d9a81fde90639083e217ab2
|
| 3 |
+
size 208358302
|
data/805_Session_1_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a6495ac4196107c2d2c1053752d438865a50c9d276cfc34d516ab0a90c5c724e
|
| 3 |
+
size 196260010
|
data/805_Session_2_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d6de2ca7c1930e5d97357a35fdc821f8f992905370d81a83c5bce814d861caba
|
| 3 |
+
size 200302582
|
data/8060_Session_1_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb175064580d4491e85c6e775295275b55d3403ecb0337c7313c3dcc2e2d9634
|
| 3 |
+
size 206291628
|
data/806_Session_1_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5d7aeb8b8ce0b75dd7d80e620650624190c88f4c57c06aa26815397cd23f2bca
|
| 3 |
+
size 204693118
|
data/8070_Session_1_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eda6245418186cc2d311144ba546f6eed139f683e271a6b83a6a6cae028f7637
|
| 3 |
+
size 204065655
|
data/913_Session_1_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1d1de255ef86afe0f7f0d83d6ba7523262ea519f1d3508a5b087116d8318eba8
|
| 3 |
+
size 267161855
|
data/914_Session_1_PDDys_VV_withcueinfo.mat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5db1c89171d97d120a41ff8145575620e02bf7368c999837e854fe47c7362978
|
| 3 |
+
size 202186485
|
images/Examples.pptx
ADDED
|
Binary file (51.3 kB). View file
|
|
|
scripts/BEH README.docx
ADDED
|
Binary file (13 kB). View file
|
|
|
scripts/BEH_VV.m
ADDED
|
@@ -0,0 +1,702 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
%% Calculate Data
|
| 2 |
+
clear all; clc
|
| 3 |
+
datapath=('Y:\EEG_Data\PDDys\BEH\');
|
| 4 |
+
cd(datapath);
|
| 5 |
+
|
| 6 |
+
SUBJS=[801:811,813:829]; % Only include here if they have BOTH sessions done!
|
| 7 |
+
|
| 8 |
+
for subno=SUBJS
|
| 9 |
+
for session=1:2
|
| 10 |
+
|
| 11 |
+
disp(['VV Beh --- Subno: ',num2str(subno),' Session: ',num2str(session)]); disp(' ');
|
| 12 |
+
|
| 13 |
+
% TRAIN
|
| 14 |
+
fileID=dir([num2str(subno),'_S',num2str(session),'*']);
|
| 15 |
+
load(fileID.name); clear fileID
|
| 16 |
+
|
| 17 |
+
% ----- Columns are: -----
|
| 18 |
+
% 1 = block
|
| 19 |
+
% 2 = trial
|
| 20 |
+
% 3 = (cTrialID)
|
| 21 |
+
% 4 = Forced choice
|
| 22 |
+
% 6 = S1
|
| 23 |
+
% 8 = S2
|
| 24 |
+
% 10 = S1 is left
|
| 25 |
+
% 11 = Stim Selected
|
| 26 |
+
% 13 = Reward (1 or 0)
|
| 27 |
+
% 14 = RT
|
| 28 |
+
|
| 29 |
+
% ----------- Re-make With More Simpleness
|
| 30 |
+
ABchoose=[1,2]; CDchoose=[3,4]; WXmatch=[5,6]; YZmatch=[7,8];
|
| 31 |
+
for ai=1:length(task_struct.trainTrials)
|
| 32 |
+
if any(task_struct.trainTrials(ai,6)==ABchoose)
|
| 33 |
+
CONDI=1;
|
| 34 |
+
elseif any(task_struct.trainTrials(ai,6)==CDchoose)
|
| 35 |
+
CONDI=2;
|
| 36 |
+
elseif any(task_struct.trainTrials(ai,6)==WXmatch)
|
| 37 |
+
CONDI=3;
|
| 38 |
+
elseif any(task_struct.trainTrials(ai,6)==YZmatch)
|
| 39 |
+
CONDI=4;
|
| 40 |
+
end
|
| 41 |
+
TRAIN(ai,1)=CONDI; clear CONDI; % Condi: 1=ABchoose 2=CDchoose 3=ABmatch 4=CDmatch
|
| 42 |
+
TRAIN(ai,2)=mod(task_struct.trainTrials(ai,11),2); % Optimal choice (odd num are optimal: 1,3,5,7)
|
| 43 |
+
TRAIN(ai,3)=task_struct.trainTrials(ai,14); % RT
|
| 44 |
+
TRAIN(ai,4)=task_struct.trainTrials(ai,13); % was rewarded or not
|
| 45 |
+
end
|
| 46 |
+
|
| 47 |
+
% ----------- Re-make With More Simpleness
|
| 48 |
+
|
| 49 |
+
for ai=1:length(task_struct.testTrials)
|
| 50 |
+
ThisSet=task_struct.testTrials(ai,[6,8]);
|
| 51 |
+
ThisSet=str2num(cat(2,num2str(ThisSet(1)),num2str(ThisSet(2))));
|
| 52 |
+
ThisChoice=task_struct.testTrials(ai,11);
|
| 53 |
+
|
| 54 |
+
if any(ThisSet==[12,21]), CONDI='AB';
|
| 55 |
+
elseif any(ThisSet==[13,31]), CONDI='AC';
|
| 56 |
+
elseif any(ThisSet==[14,41]), CONDI='AD';
|
| 57 |
+
elseif any(ThisSet==[15,51]), CONDI='AW';
|
| 58 |
+
elseif any(ThisSet==[16,61]), CONDI='AX';
|
| 59 |
+
elseif any(ThisSet==[17,71]), CONDI='AY';
|
| 60 |
+
elseif any(ThisSet==[18,81]), CONDI='AZ';
|
| 61 |
+
elseif any(ThisSet==[23,32]), CONDI='BC';
|
| 62 |
+
elseif any(ThisSet==[24,42]), CONDI='BD';
|
| 63 |
+
elseif any(ThisSet==[25,52]), CONDI='BW';
|
| 64 |
+
elseif any(ThisSet==[26,62]), CONDI='BX';
|
| 65 |
+
elseif any(ThisSet==[27,72]), CONDI='BY';
|
| 66 |
+
elseif any(ThisSet==[28,82]), CONDI='BZ';
|
| 67 |
+
elseif any(ThisSet==[34,43]), CONDI='CD';
|
| 68 |
+
elseif any(ThisSet==[35,53]), CONDI='CW';
|
| 69 |
+
elseif any(ThisSet==[36,63]), CONDI='CX';
|
| 70 |
+
elseif any(ThisSet==[37,73]), CONDI='CY';
|
| 71 |
+
elseif any(ThisSet==[38,83]), CONDI='CZ';
|
| 72 |
+
elseif any(ThisSet==[45,54]), CONDI='DW';
|
| 73 |
+
elseif any(ThisSet==[46,64]), CONDI='DX';
|
| 74 |
+
elseif any(ThisSet==[47,74]), CONDI='DY';
|
| 75 |
+
elseif any(ThisSet==[48,84]), CONDI='DZ';
|
| 76 |
+
elseif any(ThisSet==[56,65]), CONDI='WX';
|
| 77 |
+
elseif any(ThisSet==[57,75]), CONDI='WY';
|
| 78 |
+
elseif any(ThisSet==[58,85]), CONDI='WZ';
|
| 79 |
+
elseif any(ThisSet==[67,76]), CONDI='XY';
|
| 80 |
+
elseif any(ThisSet==[68,86]), CONDI='XZ';
|
| 81 |
+
elseif any(ThisSet==[78,87]), CONDI='YZ';
|
| 82 |
+
end
|
| 83 |
+
|
| 84 |
+
TEST(ai).condi=CONDI; % Condi
|
| 85 |
+
TEST(ai).choice=ThisChoice; % This Choice
|
| 86 |
+
TEST(ai).RT=task_struct.testTrials(ai,14); % RT
|
| 87 |
+
clear ThisSet ThisChoice CONDI;
|
| 88 |
+
end
|
| 89 |
+
|
| 90 |
+
save([num2str(subno),'_sess',num2str(session),'_VVbeh.mat'],'TRAIN','TEST');
|
| 91 |
+
|
| 92 |
+
clear task_struct disp_struct AB* CD* TRAIN TEST
|
| 93 |
+
end
|
| 94 |
+
end
|
| 95 |
+
|
| 96 |
+
load('Y:\EEG_Data\PDDys\ONOFF.mat','ONOFF')
|
| 97 |
+
|
| 98 |
+
row=0;
|
| 99 |
+
for subno=SUBJS
|
| 100 |
+
for session=1:2;
|
| 101 |
+
row=row+1;
|
| 102 |
+
|
| 103 |
+
if subno~=ONOFF(row,1) || session~=ONOFF(row,2), BOOM; end % Kills it if mismatch in ON/OFF Matrix!
|
| 104 |
+
|
| 105 |
+
load([num2str(subno),'_sess',num2str(session),'_VVbeh.mat'],'TRAIN','TEST');
|
| 106 |
+
|
| 107 |
+
MEGA(row).ID=subno;
|
| 108 |
+
MEGA(row).session=session;
|
| 109 |
+
MEGA(row).ONOFF=ONOFF(row,3);
|
| 110 |
+
MEGA(row).TRN_blocks=size(TRAIN,1)./40;
|
| 111 |
+
MEGA(row).TRN_ACC=mean(TRAIN(:,2));
|
| 112 |
+
MEGA(row).TRN_RT=mean(TRAIN(:,3));
|
| 113 |
+
for bi=1:4 % Condi: 1=ABchoose 2=CDchoose 3=ABmatch 4=CDmatch
|
| 114 |
+
MINISET=TRAIN(TRAIN(:,1)==bi,:);
|
| 115 |
+
MINISET(:,[5,6])=[MINISET(2:end,[2,3]);[NaN,NaN]];
|
| 116 |
+
MINISET(:,6)=MINISET(:,6)-MINISET(:,3); % RT diff
|
| 117 |
+
% --------
|
| 118 |
+
WINS=MINISET(MINISET(:,4)==1,[2,5,6]);
|
| 119 |
+
LOSSES=MINISET(MINISET(:,4)==0,[2,5,6]);
|
| 120 |
+
% --------
|
| 121 |
+
WinStay(bi)=mean(WINS(:,1)==WINS(:,2));
|
| 122 |
+
LoseSwitch(bi)=mean(LOSSES(:,1)~=LOSSES(:,2));
|
| 123 |
+
WinSpeed(bi)=mean(WINS(WINS(:,1)==WINS(:,2),3));
|
| 124 |
+
% --------
|
| 125 |
+
clear MINISET WINS LOSSES
|
| 126 |
+
end
|
| 127 |
+
|
| 128 |
+
MEGA(row).WinStay=WinStay;
|
| 129 |
+
MEGA(row).LoseSwitch=LoseSwitch;
|
| 130 |
+
MEGA(row).WinSpeed=WinSpeed;
|
| 131 |
+
|
| 132 |
+
% ********************************************************
|
| 133 |
+
for ci=1:128
|
| 134 |
+
RT(ci,1)=TEST(ci).RT;
|
| 135 |
+
% ^^^^ General Accuracy A,B,C,D == W,X,Y,Z - 4 of each set
|
| 136 |
+
ACC=NaN; PARSE=NaN;
|
| 137 |
+
if strmatch(TEST(ci).condi,'AB');
|
| 138 |
+
if TEST(ci).choice==1, ACC=1; elseif TEST(ci).choice==2, ACC=0; end; PARSE=1;
|
| 139 |
+
elseif strmatch(TEST(ci).condi,'WX');
|
| 140 |
+
if TEST(ci).choice==5, ACC=1; elseif TEST(ci).choice==6, ACC=0; end; PARSE=2;
|
| 141 |
+
elseif strmatch(TEST(ci).condi,'CD');
|
| 142 |
+
if TEST(ci).choice==3, ACC=1; elseif TEST(ci).choice==4, ACC=0; end; PARSE=3;
|
| 143 |
+
elseif strmatch(TEST(ci).condi,'YZ');
|
| 144 |
+
if TEST(ci).choice==7, ACC=1; elseif TEST(ci).choice==8, ACC=0; end; PARSE=4;
|
| 145 |
+
end
|
| 146 |
+
% ^^^^ free vs. forced A,B,C,D == W,X,Y,Z - 8 of each set
|
| 147 |
+
BIAS=NaN;
|
| 148 |
+
if strmatch(TEST(ci).condi,'AW');
|
| 149 |
+
if TEST(ci).choice==1, BIAS=1; elseif TEST(ci).choice==5, BIAS=0; end; PARSE=5;
|
| 150 |
+
elseif strmatch(TEST(ci).condi,'CY');
|
| 151 |
+
if TEST(ci).choice==3, BIAS=1; elseif TEST(ci).choice==7, BIAS=0; end; PARSE=6;
|
| 152 |
+
elseif strmatch(TEST(ci).condi,'DZ');
|
| 153 |
+
if TEST(ci).choice==4, BIAS=1; elseif TEST(ci).choice==8, BIAS=0; end; PARSE=7;
|
| 154 |
+
elseif strmatch(TEST(ci).condi,'BX');
|
| 155 |
+
if TEST(ci).choice==2, BIAS=1; elseif TEST(ci).choice==6, BIAS=0; end; PARSE=8;
|
| 156 |
+
end
|
| 157 |
+
% ^^^^
|
| 158 |
+
WITHINSET=NaN;
|
| 159 |
+
if strmatch(TEST(ci).condi,'AC');
|
| 160 |
+
if TEST(ci).choice==1, WITHINSET=1; elseif TEST(ci).choice==3, WITHINSET=0; end; PARSE=9;
|
| 161 |
+
elseif strmatch(TEST(ci).condi,'AD');
|
| 162 |
+
if TEST(ci).choice==1, WITHINSET=1; elseif TEST(ci).choice==4, WITHINSET=0; end; PARSE=10;
|
| 163 |
+
elseif strmatch(TEST(ci).condi,'BC');
|
| 164 |
+
if TEST(ci).choice==3, WITHINSET=1; elseif TEST(ci).choice==2, WITHINSET=0; end; PARSE=11;
|
| 165 |
+
elseif strmatch(TEST(ci).condi,'BD');
|
| 166 |
+
if TEST(ci).choice==4, WITHINSET=1; elseif TEST(ci).choice==2, WITHINSET=0; end; PARSE=12;
|
| 167 |
+
elseif strmatch(TEST(ci).condi,'WY');
|
| 168 |
+
if TEST(ci).choice==5, WITHINSET=1; elseif TEST(ci).choice==7, WITHINSET=0; end; PARSE=13;
|
| 169 |
+
elseif strmatch(TEST(ci).condi,'WZ');
|
| 170 |
+
if TEST(ci).choice==5, WITHINSET=1; elseif TEST(ci).choice==8, WITHINSET=0; end; PARSE=14;
|
| 171 |
+
elseif strmatch(TEST(ci).condi,'XY');
|
| 172 |
+
if TEST(ci).choice==7, WITHINSET=1; elseif TEST(ci).choice==6, WITHINSET=0; end; PARSE=15;
|
| 173 |
+
elseif strmatch(TEST(ci).condi,'XZ');
|
| 174 |
+
if TEST(ci).choice==8, WITHINSET=1; elseif TEST(ci).choice==6, WITHINSET=0; end; PARSE=16;
|
| 175 |
+
end
|
| 176 |
+
% ^^^^
|
| 177 |
+
EASY=NaN;
|
| 178 |
+
if strmatch(TEST(ci).condi,'AX');
|
| 179 |
+
if TEST(ci).choice==1, EASY=1; elseif TEST(ci).choice==5, EASY=0; end; PARSE=17;
|
| 180 |
+
elseif strmatch(TEST(ci).condi,'AY');
|
| 181 |
+
if TEST(ci).choice==1, EASY=1; elseif TEST(ci).choice==7, EASY=0; end; PARSE=18;
|
| 182 |
+
elseif strmatch(TEST(ci).condi,'AZ');
|
| 183 |
+
if TEST(ci).choice==1, EASY=1; elseif TEST(ci).choice==8, EASY=0; end; PARSE=19;
|
| 184 |
+
elseif strmatch(TEST(ci).condi,'BW');
|
| 185 |
+
if TEST(ci).choice==5, EASY=1; elseif TEST(ci).choice==2, EASY=0; end; PARSE=20;
|
| 186 |
+
elseif strmatch(TEST(ci).condi,'CW');
|
| 187 |
+
if TEST(ci).choice==5, EASY=1; elseif TEST(ci).choice==3, EASY=0; end; PARSE=21;
|
| 188 |
+
elseif strmatch(TEST(ci).condi,'DW');
|
| 189 |
+
if TEST(ci).choice==5, EASY=1; elseif TEST(ci).choice==4, EASY=0; end; PARSE=22;
|
| 190 |
+
end
|
| 191 |
+
% ^^^^
|
| 192 |
+
MEDIUM=NaN;
|
| 193 |
+
if strmatch(TEST(ci).condi,'CX');
|
| 194 |
+
if TEST(ci).choice==3, MEDIUM=1; elseif TEST(ci).choice==6, MEDIUM=0; end; PARSE=23;
|
| 195 |
+
elseif strmatch(TEST(ci).condi,'CZ');
|
| 196 |
+
if TEST(ci).choice==3, MEDIUM=1; elseif TEST(ci).choice==8, MEDIUM=0; end; PARSE=24;
|
| 197 |
+
elseif strmatch(TEST(ci).condi,'BY');
|
| 198 |
+
if TEST(ci).choice==7, MEDIUM=1; elseif TEST(ci).choice==2, MEDIUM=0; end; PARSE=25;
|
| 199 |
+
elseif strmatch(TEST(ci).condi,'DY');
|
| 200 |
+
if TEST(ci).choice==7, MEDIUM=1; elseif TEST(ci).choice==4, MEDIUM=0; end; PARSE=26;
|
| 201 |
+
end
|
| 202 |
+
% ^^^^
|
| 203 |
+
HARD=NaN;
|
| 204 |
+
if strmatch(TEST(ci).condi,'BZ');
|
| 205 |
+
if TEST(ci).choice==8, HARD=1; elseif TEST(ci).choice==2, HARD=0; end; PARSE=27;
|
| 206 |
+
elseif strmatch(TEST(ci).condi,'DX');
|
| 207 |
+
if TEST(ci).choice==4, HARD=1; elseif TEST(ci).choice==6, HARD=0; end; PARSE=28;
|
| 208 |
+
end
|
| 209 |
+
% ^^^^
|
| 210 |
+
TST_ACC(ci,1)=ACC;
|
| 211 |
+
TST_BIAS(ci,1)=BIAS;
|
| 212 |
+
TST_WITHINSET(ci,1)=WITHINSET;
|
| 213 |
+
TST_EASY(ci,1)=EASY;
|
| 214 |
+
TST_MEDIUM(ci,1)=MEDIUM;
|
| 215 |
+
TST_HARD(ci,1)=HARD;
|
| 216 |
+
TST_PARSE(ci,1)=PARSE;
|
| 217 |
+
clear ACC BIAS WITHINSET EASY MEDIUM HARD PARSE;
|
| 218 |
+
end
|
| 219 |
+
|
| 220 |
+
for di=1:4
|
| 221 |
+
ACCURACIES(di)=nanmean(TST_ACC(TST_PARSE==di));
|
| 222 |
+
end
|
| 223 |
+
for di=5:8
|
| 224 |
+
BIASES(di-4)=nanmean(TST_BIAS(TST_PARSE==di));
|
| 225 |
+
end
|
| 226 |
+
for di=9:16
|
| 227 |
+
WITHINSETS(di-8)=nanmean(TST_WITHINSET(TST_PARSE==di));
|
| 228 |
+
end
|
| 229 |
+
for di=17:22
|
| 230 |
+
EASYS(di-16)=nanmean(TST_EASY(TST_PARSE==di));
|
| 231 |
+
end
|
| 232 |
+
for di=23:26
|
| 233 |
+
MEDIUMS(di-22)=nanmean(TST_MEDIUM(TST_PARSE==di));
|
| 234 |
+
end
|
| 235 |
+
for di=27:28
|
| 236 |
+
HARDS(di-26)=nanmean(TST_HARD(TST_PARSE==di));
|
| 237 |
+
end
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
MEGA(row).TST_ACC=ACCURACIES;
|
| 241 |
+
MEGA(row).TST_BIAS=BIASES;
|
| 242 |
+
MEGA(row).TST_WITHINSET=WITHINSETS;
|
| 243 |
+
MEGA(row).TST_EASY=EASYS;
|
| 244 |
+
MEGA(row).TST_MEDIUM=MEDIUMS;
|
| 245 |
+
MEGA(row).TST_HARD=HARDS;
|
| 246 |
+
MEGA(row).TST_RT=mean(RT);
|
| 247 |
+
|
| 248 |
+
clearvars -except MEGA subjcount subno session RT row ONOFF SUBJS;
|
| 249 |
+
end
|
| 250 |
+
end
|
| 251 |
+
save('VV_Behavior.mat','MEGA');
|
| 252 |
+
|
| 253 |
+
clear ONOFF RT row session subno
|
| 254 |
+
|
| 255 |
+
%%
|
| 256 |
+
clear all; clc
|
| 257 |
+
datapath=('Y:\EEG_Data\PDDys\BEH\');
|
| 258 |
+
cd(datapath);
|
| 259 |
+
SUBJS=[801:811,813:829]; % Only include here if they have BOTH sessions done!
|
| 260 |
+
|
| 261 |
+
load('Y:\EEG_Data\PDDys\PD_Moderators.mat','Mods','Mods_Hdr')
|
| 262 |
+
|
| 263 |
+
load('VV_Behavior.mat','MEGA');
|
| 264 |
+
|
| 265 |
+
row=0;
|
| 266 |
+
for subno=SUBJS
|
| 267 |
+
row=row+1;
|
| 268 |
+
for mi=1:size(MEGA,2)
|
| 269 |
+
if MEGA(mi).ID==subno && MEGA(mi).ONOFF==1
|
| 270 |
+
ON.ID(row,:)=MEGA(mi).ID;
|
| 271 |
+
ON.session(row,:)=MEGA(mi).session;
|
| 272 |
+
ON.TRN_ACC(row,:)=MEGA(mi).TRN_ACC;
|
| 273 |
+
ON.TRN_RT(row,:)=MEGA(mi).TRN_RT;
|
| 274 |
+
ON.WinStay(row,:)=MEGA(mi).WinStay;
|
| 275 |
+
ON.LoseSwitch(row,:)=MEGA(mi).LoseSwitch;
|
| 276 |
+
ON.WinSpeed(row,:)=MEGA(mi).WinSpeed;
|
| 277 |
+
ON.TST_ACC(row,:)=MEGA(mi).TST_ACC;
|
| 278 |
+
ON.TST_BIAS(row,:)=MEGA(mi).TST_BIAS;
|
| 279 |
+
ON.TST_WITHINSET(row,:)=MEGA(mi).TST_WITHINSET;
|
| 280 |
+
ON.TST_EASY(row,:)=MEGA(mi).TST_EASY;
|
| 281 |
+
ON.TST_MEDIUM(row,:)=MEGA(mi).TST_MEDIUM;
|
| 282 |
+
ON.TST_HARD(row,:)=MEGA(mi).TST_HARD;
|
| 283 |
+
ON.TST_RT(row,:)=MEGA(mi).TST_RT;
|
| 284 |
+
ON.Blocks(row,:)=MEGA(mi).TRN_blocks;
|
| 285 |
+
elseif MEGA(mi).ID==subno && MEGA(mi).ONOFF==0
|
| 286 |
+
OFF.ID(row,:)=MEGA(mi).ID;
|
| 287 |
+
OFF.session(row,:)=MEGA(mi).session;
|
| 288 |
+
OFF.TRN_ACC(row,:)=MEGA(mi).TRN_ACC;
|
| 289 |
+
OFF.TRN_RT(row,:)=MEGA(mi).TRN_RT;
|
| 290 |
+
OFF.WinStay(row,:)=MEGA(mi).WinStay;
|
| 291 |
+
OFF.LoseSwitch(row,:)=MEGA(mi).LoseSwitch;
|
| 292 |
+
OFF.WinSpeed(row,:)=MEGA(mi).WinSpeed;
|
| 293 |
+
OFF.TST_ACC(row,:)=MEGA(mi).TST_ACC;
|
| 294 |
+
OFF.TST_BIAS(row,:)=MEGA(mi).TST_BIAS;
|
| 295 |
+
OFF.TST_WITHINSET(row,:)=MEGA(mi).TST_WITHINSET;
|
| 296 |
+
OFF.TST_EASY(row,:)=MEGA(mi).TST_EASY;
|
| 297 |
+
OFF.TST_MEDIUM(row,:)=MEGA(mi).TST_MEDIUM;
|
| 298 |
+
OFF.TST_HARD(row,:)=MEGA(mi).TST_HARD;
|
| 299 |
+
OFF.TST_RT(row,:)=MEGA(mi).TST_RT;
|
| 300 |
+
OFF.Blocks(row,:)=MEGA(mi).TRN_blocks;
|
| 301 |
+
end
|
| 302 |
+
end
|
| 303 |
+
end
|
| 304 |
+
|
| 305 |
+
save('BEH_VV_PD','ON','OFF');
|
| 306 |
+
|
| 307 |
+
BigN=length(SUBJS);
|
| 308 |
+
jitter=rand(1,BigN)./2.5; jitter=jitter-mean(jitter);
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
% % SOMESX=double(repmat((Mods(:,9)>nanmedian(Mods(:,9))),1,4));
|
| 312 |
+
% % SOMESX(SOMESX==0)=NaN;
|
| 313 |
+
% % ON.TST_BIAS=ON.TST_BIAS.*SOMESX;
|
| 314 |
+
% % OFF.TST_BIAS=OFF.TST_BIAS.*SOMESX;
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
%%
|
| 318 |
+
figure;
|
| 319 |
+
subplot(1,3,1); hold on
|
| 320 |
+
bar(1:4,mean(ON.WinStay),.25,'w');
|
| 321 |
+
bar(1.25:4.25,mean(OFF.WinStay),.25,'r');
|
| 322 |
+
errorbar(1:4,mean(ON.WinStay),std(ON.WinStay)./sqrt(BigN),'k.');
|
| 323 |
+
errorbar(1.25:4.25,mean(OFF.WinStay),std(OFF.WinStay)./sqrt(BigN),'k.');
|
| 324 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'AB','CD','WY','XZ'},'ylim',[.5 1]);
|
| 325 |
+
title('TRN WinStay');
|
| 326 |
+
subplot(1,3,2); hold on
|
| 327 |
+
bar(1:4,nanmean(ON.LoseSwitch),.25,'w');
|
| 328 |
+
bar(1.25:4.25,nanmean(OFF.LoseSwitch),.25,'r');
|
| 329 |
+
errorbar(1:4,nanmean(ON.LoseSwitch),nanstd(ON.LoseSwitch)./sqrt(BigN),'k.');
|
| 330 |
+
errorbar(1.25:4.25,nanmean(OFF.LoseSwitch),nanstd(OFF.LoseSwitch)./sqrt(BigN),'k.');
|
| 331 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'AB','CD','WY','XZ'});
|
| 332 |
+
title('TRN LoseSwitch');
|
| 333 |
+
subplot(1,3,3); hold on
|
| 334 |
+
bar(1:4,nanmean(ON.WinSpeed),.25,'w');
|
| 335 |
+
bar(1.25:4.25,nanmean(OFF.WinSpeed),.25,'r');
|
| 336 |
+
errorbar(1:4,nanmean(ON.WinSpeed),nanstd(ON.WinSpeed)./sqrt(BigN),'k.');
|
| 337 |
+
errorbar(1.25:4.25,nanmean(OFF.WinSpeed),nanstd(OFF.WinSpeed)./sqrt(BigN),'k.');
|
| 338 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'AB','CD','WY','XZ'});
|
| 339 |
+
title('TRN WinSpeed');
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
%%
|
| 343 |
+
figure;
|
| 344 |
+
subplot(2,5,1); hold on
|
| 345 |
+
bar(1,mean(ON.TRN_ACC),'w');
|
| 346 |
+
bar(2,mean(OFF.TRN_ACC),'r');
|
| 347 |
+
errorbar(1,mean(ON.TRN_ACC),std(ON.TRN_ACC)./sqrt(BigN),'k.');
|
| 348 |
+
errorbar(2,mean(OFF.TRN_ACC),std(OFF.TRN_ACC)./sqrt(BigN),'k.');
|
| 349 |
+
% plot(1,ON.TRN_ACC,'b.'); plot(2,OFF.TRN_ACC,'b.');
|
| 350 |
+
% plot([1 2],[ON.TRN_ACC OFF.TRN_ACC],'b-');
|
| 351 |
+
set(gca,'xlim',[0 3],'xtick',[1:1:2],'xticklabel',{'ON','OFF'},'ylim',[.5 1]);
|
| 352 |
+
title('TRN Acc');
|
| 353 |
+
|
| 354 |
+
subplot(2,5,2:3); hold on
|
| 355 |
+
bar(1:4,mean(ON.TST_ACC),.25,'w');
|
| 356 |
+
bar(1.25:1:4.25,mean(OFF.TST_ACC),.25,'r');
|
| 357 |
+
errorbar(1:4,mean(ON.TST_ACC),std(ON.TST_ACC)./sqrt(BigN),'k.');
|
| 358 |
+
errorbar(1.25:1:4.25,mean(OFF.TST_ACC),std(OFF.TST_ACC)./sqrt(BigN),'k.');
|
| 359 |
+
% plot(1:4,ON.TST_ACC,'b.'); plot(1.25:1:4.25,OFF.TST_ACC,'b.');
|
| 360 |
+
% plot([1 1.25],[ON.TST_ACC(:,1) OFF.TST_ACC(:,1)],'b-');
|
| 361 |
+
% plot([2 2.25],[ON.TST_ACC(:,2) OFF.TST_ACC(:,2)],'b-');
|
| 362 |
+
% plot([3 3.25],[ON.TST_ACC(:,3) OFF.TST_ACC(:,3)],'b-');
|
| 363 |
+
% plot([4 4.25],[ON.TST_ACC(:,4) OFF.TST_ACC(:,4)],'b-');
|
| 364 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'AB','WX','CD','YZ'});
|
| 365 |
+
title('TST Acc');
|
| 366 |
+
|
| 367 |
+
subplot(2,5,4:5); hold on
|
| 368 |
+
bar(1:4,nanmean(ON.TST_BIAS),.25,'w');
|
| 369 |
+
bar(1.25:1:4.25,nanmean(OFF.TST_BIAS),.25,'r');
|
| 370 |
+
errorbar(1:4,nanmean(ON.TST_BIAS),nanstd(ON.TST_BIAS)./sqrt(BigN),'k.');
|
| 371 |
+
errorbar(1.25:1:4.25,nanmean(OFF.TST_BIAS),nanstd(OFF.TST_BIAS)./sqrt(BigN),'k.');
|
| 372 |
+
% plot(1:4,ON.TST_BIAS,'b.'); plot(1.25:1:4.25,OFF.TST_BIAS,'b.');
|
| 373 |
+
% plot([1 1.25],[ON.TST_BIAS(:,1) OFF.TST_BIAS(:,1)],'b-');
|
| 374 |
+
% plot([2 2.25],[ON.TST_BIAS(:,2) OFF.TST_BIAS(:,2)],'b-');
|
| 375 |
+
% plot([3 3.25],[ON.TST_BIAS(:,3) OFF.TST_BIAS(:,3)],'b-');
|
| 376 |
+
% plot([4 4.25],[ON.TST_BIAS(:,4) OFF.TST_BIAS(:,4)],'b-');
|
| 377 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'AW','CY','DZ','BX'});
|
| 378 |
+
title('TST BIAS');
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
subplot(2,5,6); hold on
|
| 383 |
+
bar(1,mean(ON.TRN_ACC-OFF.TRN_ACC),'b');
|
| 384 |
+
errorbar(1,mean(ON.TRN_ACC-OFF.TRN_ACC),std(ON.TRN_ACC-OFF.TRN_ACC)./sqrt(BigN),'k.');
|
| 385 |
+
set(gca,'xlim',[0 2],'xtick',[1:1:1]);
|
| 386 |
+
title('TRN Acc DIFF');
|
| 387 |
+
|
| 388 |
+
subplot(2,5,7:8); hold on
|
| 389 |
+
bar(1:4,mean(ON.TST_ACC-OFF.TST_ACC),.25,'b');
|
| 390 |
+
errorbar(1:4,mean(ON.TST_ACC-OFF.TST_ACC),std(ON.TST_ACC-OFF.TST_ACC)./sqrt(BigN),'k.');
|
| 391 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'AB','WX','CD','YZ'});
|
| 392 |
+
title('TST Acc');
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
subplot(2,5,9:10); hold on
|
| 396 |
+
bar(1:4,nanmean( ON.TST_BIAS-OFF.TST_BIAS ),.25,'w');
|
| 397 |
+
errorbar(1:4,nanmean(ON.TST_BIAS-OFF.TST_BIAS ),std(ON.TST_BIAS-OFF.TST_BIAS )./sqrt(BigN),'k.');
|
| 398 |
+
% for plotdiffi=1:4
|
| 399 |
+
% plot(plotdiffi+jitter',(ON.TST_BIAS(:,plotdiffi)-OFF.TST_BIAS(:,plotdiffi)),'mo');
|
| 400 |
+
% end
|
| 401 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'AW','CY','DZ','BX'});
|
| 402 |
+
title('TST BIAS');
|
| 403 |
+
|
| 404 |
+
%%
|
| 405 |
+
MODS=9;
|
| 406 |
+
|
| 407 |
+
BigDiff=ON.TST_BIAS-OFF.TST_BIAS;
|
| 408 |
+
for polyi=1:BigN
|
| 409 |
+
POLY{1}(polyi)=corr(ON.TST_BIAS(polyi,:)',(1:4)');
|
| 410 |
+
POLY{2}(polyi)=corr(OFF.TST_BIAS(polyi,:)',(1:4)');
|
| 411 |
+
POLY{3}(polyi)=corr(BigDiff(polyi,:)',(1:4)');
|
| 412 |
+
end
|
| 413 |
+
|
| 414 |
+
dispidx=3;
|
| 415 |
+
figure;
|
| 416 |
+
subplot(1,2,1); hold on
|
| 417 |
+
bar(mean(POLY{dispidx}),'w');
|
| 418 |
+
plot(.86:.01:1.13,POLY{dispidx},'bd');
|
| 419 |
+
errorbar(mean(POLY{dispidx}),std(POLY{dispidx})./sqrt(BigN),'k.')
|
| 420 |
+
set(gca,'xlim',[0 2],'xtick',[1:1:2])
|
| 421 |
+
ylabel('Slope in Accuracy Difference');
|
| 422 |
+
[H,P,CI,STATS]=ttest(POLY{dispidx})
|
| 423 |
+
title(['BIAS t=',num2str(STATS.tstat),' p=',num2str(P)]);
|
| 424 |
+
subplot(1,2,2); hold on
|
| 425 |
+
scatter( Mods(:,MODS) , POLY{dispidx}' ,'k'); lsline
|
| 426 |
+
[rho,p]=corr( Mods(:,MODS) , POLY{dispidx}' ,'type','Spearman','rows','complete' );
|
| 427 |
+
text(.4,.1,['r=',num2str(rho),' p=',num2str(p)],'sc')
|
| 428 |
+
title(['POLY & ',Mods_Hdr{MODS}])
|
| 429 |
+
|
| 430 |
+
FORSPSS=[BigDiff,POLY{3}'];
|
| 431 |
+
|
| 432 |
+
for slopei=1:4
|
| 433 |
+
if slopei==1, X=ON.TST_BIAS;
|
| 434 |
+
elseif slopei==2, X=OFF.TST_BIAS;
|
| 435 |
+
elseif slopei==3, X=CTL.TST_BIAS;
|
| 436 |
+
elseif slopei==4, X=ON.TST_BIAS-OFF.TST_BIAS;
|
| 437 |
+
end
|
| 438 |
+
for polyi=1:length(X)
|
| 439 |
+
SLOPES{slopei}(polyi)=corr(X(polyi,:)',(1:4)');
|
| 440 |
+
end
|
| 441 |
+
end
|
| 442 |
+
|
| 443 |
+
figure;
|
| 444 |
+
subplot(2,2,1); hold on
|
| 445 |
+
bar(1,mean(SLOPES{1}),'w');
|
| 446 |
+
bar(2,mean(SLOPES{2}),'r');
|
| 447 |
+
bar(3,mean(SLOPES{3}),'g');
|
| 448 |
+
errorbar(1,mean(SLOPES{1}),std(SLOPES{1})./sqrt(BigN),'k.');
|
| 449 |
+
errorbar(2,mean(SLOPES{2}),std(SLOPES{2})./sqrt(BigN),'k.');
|
| 450 |
+
errorbar(3,mean(SLOPES{3}),std(SLOPES{3})./sqrt(BigN_ctl),'k.');
|
| 451 |
+
ylabel('Slope in Accuracy Difference');
|
| 452 |
+
subplot(2,2,2); hold on
|
| 453 |
+
scatter( Mods(:,MODS) , SLOPES{4} ,'b'); lsline
|
| 454 |
+
[rho,p]=corr( Mods(:,MODS) , SLOPES{4}' ,'type','Spearman','rows','complete' );
|
| 455 |
+
text(.4,.1,['r=',num2str(rho),' p=',num2str(p)],'sc')
|
| 456 |
+
title(['ON-OFF & ',Mods_Hdr{MODS}])
|
| 457 |
+
subplot(2,2,3); hold on
|
| 458 |
+
scatter( Mods(:,MODS) , SLOPES{1} ,'k'); lsline
|
| 459 |
+
[rho,p]=corr( Mods(:,MODS) , SLOPES{1}' ,'type','Spearman','rows','complete' );
|
| 460 |
+
text(.4,.1,['r=',num2str(rho),' p=',num2str(p)],'sc')
|
| 461 |
+
title(['ON & ',Mods_Hdr{MODS}])
|
| 462 |
+
subplot(2,2,4); hold on
|
| 463 |
+
scatter( Mods(:,MODS) , SLOPES{2} ,'r'); lsline
|
| 464 |
+
[rho,p]=corr( Mods(:,MODS) , SLOPES{2}' ,'type','Spearman','rows','complete' );
|
| 465 |
+
text(.4,.1,['r=',num2str(rho),' p=',num2str(p)],'sc')
|
| 466 |
+
title(['OFF & ',Mods_Hdr{MODS}])
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
%%
|
| 470 |
+
|
| 471 |
+
% LED & win-speed diff
|
| 472 |
+
% LED & BX bias diff
|
| 473 |
+
|
| 474 |
+
MOD_IDX=2;
|
| 475 |
+
|
| 476 |
+
A1=sum(OFF.TST_BIAS(:,1),2)
|
| 477 |
+
A2=sum(ON.TST_BIAS(:,1),2)
|
| 478 |
+
A3=A1-A2;
|
| 479 |
+
|
| 480 |
+
figure;
|
| 481 |
+
subplot(1,3,1); hold on
|
| 482 |
+
scatter( Mods(:,MOD_IDX) , A1 ,'k'); lsline
|
| 483 |
+
[rho,p]=corr( Mods(:,MOD_IDX) , A1 ,'type','Spearman','rows','complete' );
|
| 484 |
+
text(.4,.1,['r=',num2str(rho),' p=',num2str(p)],'sc')
|
| 485 |
+
title(['OFF & ',Mods_Hdr{MOD_IDX}])
|
| 486 |
+
subplot(1,3,2); hold on
|
| 487 |
+
scatter( Mods(:,MOD_IDX) ,A2 ,'k' ); lsline
|
| 488 |
+
[rho,p]=corr( Mods(:,MOD_IDX) , A2 ,'type','Spearman','rows','complete' );
|
| 489 |
+
text(.4,.1,['r=',num2str(rho),' p=',num2str(p)],'sc')
|
| 490 |
+
title(['ON & ',Mods_Hdr{MOD_IDX}])
|
| 491 |
+
subplot(1,3,3); hold on
|
| 492 |
+
scatter( Mods(:,MOD_IDX) , A3 ,'k' ); lsline
|
| 493 |
+
[rho,p]=corr( Mods(:,MOD_IDX) , A3 ,'type','Spearman','rows','complete' );
|
| 494 |
+
text(.4,.1,['r=',num2str(rho),' p=',num2str(p)],'sc')
|
| 495 |
+
title(['OFF-ON & ',Mods_Hdr{MOD_IDX}])
|
| 496 |
+
|
| 497 |
+
%%
|
| 498 |
+
load('VV_Behavior_CTL.mat','CTL');
|
| 499 |
+
|
| 500 |
+
BigN=length(SUBJS);
|
| 501 |
+
jitter=rand(1,BigN)./2.5; jitter=jitter-mean(jitter);
|
| 502 |
+
BigN_ctl=size(CTL.ID,1);
|
| 503 |
+
noise_ctl=rand(1,BigN_ctl)./100;
|
| 504 |
+
|
| 505 |
+
figure;
|
| 506 |
+
subplot(2,5,1); hold on
|
| 507 |
+
bar(1,mean(ON.TRN_ACC),'w');
|
| 508 |
+
bar(2,mean(OFF.TRN_ACC),'r');
|
| 509 |
+
bar(3,mean(CTL.TRN_ACC),'g');
|
| 510 |
+
errorbar(1,mean(ON.TRN_ACC),std(ON.TRN_ACC)./sqrt(BigN),'k.');
|
| 511 |
+
errorbar(2,mean(OFF.TRN_ACC),std(OFF.TRN_ACC)./sqrt(BigN),'k.');
|
| 512 |
+
errorbar(3,mean(CTL.TRN_ACC),std(CTL.TRN_ACC)./sqrt(BigN_ctl),'k.');
|
| 513 |
+
set(gca,'xlim',[0 4],'xtick',[1:1:3],'xticklabel',{'ON','OFF','CTL'},'ylim',[.5 1]);
|
| 514 |
+
title('TRN Acc');
|
| 515 |
+
|
| 516 |
+
subplot(2,5,2:3); hold on
|
| 517 |
+
bar(1-.25:4-.25,mean(ON.TST_ACC),.25,'w');
|
| 518 |
+
bar(1:1:4,mean(OFF.TST_ACC),.25,'r');
|
| 519 |
+
bar(1.25:1:4.25,mean(CTL.TST_ACC),.25,'g');
|
| 520 |
+
errorbar(1-.25:4-.25,mean(ON.TST_ACC),std(ON.TST_ACC)./sqrt(BigN),'k.');
|
| 521 |
+
errorbar(1:1:4,mean(OFF.TST_ACC),std(OFF.TST_ACC)./sqrt(BigN),'k.');
|
| 522 |
+
errorbar(1.25:1:4.25,mean(CTL.TST_ACC),std(CTL.TST_ACC)./sqrt(BigN_ctl),'k.');
|
| 523 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'AB','WX','CD','YZ'});
|
| 524 |
+
title('TST Acc');
|
| 525 |
+
|
| 526 |
+
subplot(2,5,4:5); hold on
|
| 527 |
+
bar(1-.25:4-.25,mean(ON.TST_BIAS),.25,'w');
|
| 528 |
+
bar(1:1:4,mean(OFF.TST_BIAS),.25,'r');
|
| 529 |
+
bar(1.25:1:4.25,mean(CTL.TST_BIAS),.25,'g');
|
| 530 |
+
errorbar(1-.25:4-.25,mean(ON.TST_BIAS),std(ON.TST_BIAS)./sqrt(BigN),'k.');
|
| 531 |
+
errorbar(1:1:4,mean(OFF.TST_BIAS),std(OFF.TST_BIAS)./sqrt(BigN),'k.');
|
| 532 |
+
errorbar(1.25:1:4.25,mean(CTL.TST_BIAS),std(CTL.TST_BIAS)./sqrt(BigN_ctl),'k.');
|
| 533 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'AW','CY','DZ','BX'});
|
| 534 |
+
title('TST BIAS');
|
| 535 |
+
|
| 536 |
+
[H,P,CI,STATS]=ttest2(ON.TST_BIAS(:,1),CTL.TST_BIAS(:,1))
|
| 537 |
+
[H,P,CI,STATS]=ttest2(OFF.TST_BIAS(:,1),CTL.TST_BIAS(:,1))
|
| 538 |
+
|
| 539 |
+
subplot(2,5,6); hold on
|
| 540 |
+
bar(1,mean(ON.TRN_ACC-OFF.TRN_ACC),'b');
|
| 541 |
+
errorbar(1,mean(ON.TRN_ACC-OFF.TRN_ACC),std(ON.TRN_ACC-OFF.TRN_ACC)./sqrt(BigN),'k.');
|
| 542 |
+
set(gca,'xlim',[0 2],'xtick',[1:1:1]);
|
| 543 |
+
title('TRN Acc DIFF');
|
| 544 |
+
|
| 545 |
+
subplot(2,5,7:8); hold on
|
| 546 |
+
bar(1:4,mean(ON.TST_ACC-OFF.TST_ACC),.25,'b');
|
| 547 |
+
errorbar(1:4,mean(ON.TST_ACC-OFF.TST_ACC),std(ON.TST_ACC-OFF.TST_ACC)./sqrt(BigN),'k.');
|
| 548 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'AB','WX','CD','YZ'});
|
| 549 |
+
title('TST Acc DIFF');
|
| 550 |
+
|
| 551 |
+
subplot(2,5,9:10); hold on
|
| 552 |
+
bar(1:4,mean(ON.TST_BIAS-OFF.TST_BIAS),.25,'w');
|
| 553 |
+
errorbar(1:4,mean(ON.TST_BIAS-OFF.TST_BIAS),std(ON.TST_BIAS-OFF.TST_BIAS)./sqrt(BigN),'k.');
|
| 554 |
+
% % for plotdiffi=1:4
|
| 555 |
+
% % plot(plotdiffi+jitter',(ON.TST_BIAS(:,plotdiffi)-OFF.TST_BIAS(:,plotdiffi)),'mo');
|
| 556 |
+
% % end
|
| 557 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'AW','CY','DZ','BX'});
|
| 558 |
+
title('TST BIAS DIFF');
|
| 559 |
+
|
| 560 |
+
%%
|
| 561 |
+
|
| 562 |
+
%%
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
figure;
|
| 566 |
+
subplot(3,2,1:2)
|
| 567 |
+
hold on
|
| 568 |
+
bar(1-.25:1:8-.25,mean(VV.CTL.TST_WITHINSET),.25,'g');
|
| 569 |
+
bar(1:1:8,mean(VV.ON.TST_WITHINSET),.25,'w');
|
| 570 |
+
bar(1+.25:1:8+.25,mean(VV.OFF.TST_WITHINSET),.25,'r');
|
| 571 |
+
errorbar(1-.25:1:8-.25,mean(VV.CTL.TST_WITHINSET),std(VV.CTL.TST_WITHINSET)./sqrt(BigN_ctl),'k.');
|
| 572 |
+
errorbar(1:1:8,mean(VV.ON.TST_WITHINSET),std(VV.ON.TST_WITHINSET)./sqrt(BigN),'k.');
|
| 573 |
+
errorbar(1+.25:1:8+.25,mean(VV.OFF.TST_WITHINSET),std(VV.OFF.TST_WITHINSET)./sqrt(BigN),'k.');
|
| 574 |
+
plot([0 9],[.5 .5],'b:')
|
| 575 |
+
set(gca,'xlim',[0 9],'xtick',[1:1:8],'xticklabel',{'AC','AD','CB','BD','WY','WZ','YX','XZ'},'ytick',[0:.25:1]);
|
| 576 |
+
title('TST w/in set Acc');
|
| 577 |
+
|
| 578 |
+
subplot(3,2,3:4)
|
| 579 |
+
hold on
|
| 580 |
+
bar(1-.25:1:6-.25,nanmean(VV.CTL.TST_EASY),.25,'g');
|
| 581 |
+
bar(1:1:6,nanmean(VV.ON.TST_EASY),.25,'w');
|
| 582 |
+
bar(1+.25:1:6+.25,nanmean(VV.OFF.TST_EASY),.25,'r');
|
| 583 |
+
errorbar(1-.25:1:6-.25,nanmean(VV.CTL.TST_EASY),nanstd(VV.CTL.TST_EASY)./sqrt(BigN_ctl),'k.');
|
| 584 |
+
errorbar(1:1:6,nanmean(VV.ON.TST_EASY),nanstd(VV.ON.TST_EASY)./sqrt(BigN),'k.');
|
| 585 |
+
errorbar(1+.25:1:6+.25,nanmean(VV.OFF.TST_EASY),nanstd(VV.OFF.TST_EASY)./sqrt(BigN),'k.');
|
| 586 |
+
plot([0 7],[.5 .5],'b:')
|
| 587 |
+
set(gca,'xlim',[0 7],'xtick',[1:1:6],'xticklabel',{'AX','AY','AZ','WB','WC','WD'},'ytick',[0:.25:1]);
|
| 588 |
+
title('TST EASY Acc');
|
| 589 |
+
|
| 590 |
+
subplot(3,2,5)
|
| 591 |
+
hold on
|
| 592 |
+
bar(1-.25:1:4-.25,nanmean(VV.CTL.TST_MEDIUM),.25,'g');
|
| 593 |
+
bar(1:1:4,nanmean(VV.ON.TST_MEDIUM),.25,'w');
|
| 594 |
+
bar(1+.25:1:4+.25,nanmean(VV.OFF.TST_MEDIUM),.25,'r');
|
| 595 |
+
errorbar(1-.25:1:4-.25,nanmean(VV.CTL.TST_MEDIUM),nanstd(VV.CTL.TST_MEDIUM)./sqrt(BigN_ctl),'k.');
|
| 596 |
+
errorbar(1:1:4,nanmean(VV.ON.TST_MEDIUM),nanstd(VV.ON.TST_MEDIUM)./sqrt(BigN),'k.');
|
| 597 |
+
errorbar(1+.25:1:4+.25,nanmean(VV.OFF.TST_MEDIUM),nanstd(VV.OFF.TST_MEDIUM)./sqrt(BigN),'k.');
|
| 598 |
+
plot([0 5],[.5 .5],'b:')
|
| 599 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'CX','CZ','YB','YD'},'ytick',[0:.25:1]);
|
| 600 |
+
title('TST MEDIUM Acc');
|
| 601 |
+
|
| 602 |
+
subplot(3,2,6)
|
| 603 |
+
hold on
|
| 604 |
+
bar(1-.25:1:2-.25,nanmean(VV.CTL.TST_HARD),.25,'g');
|
| 605 |
+
bar(1:1:2,nanmean(VV.ON.TST_HARD),.25,'w');
|
| 606 |
+
bar(1+.25:1:2+.25,nanmean(VV.OFF.TST_HARD),.25,'r');
|
| 607 |
+
errorbar(1-.25:1:2-.25,nanmean(VV.CTL.TST_HARD),nanstd(VV.CTL.TST_HARD)./sqrt(BigN_ctl),'k.');
|
| 608 |
+
errorbar(1:1:2,nanmean(VV.ON.TST_HARD),nanstd(VV.ON.TST_HARD)./sqrt(BigN),'k.');
|
| 609 |
+
errorbar(1+.25:1:2+.25,nanmean(VV.OFF.TST_HARD),nanstd(VV.OFF.TST_HARD)./sqrt(BigN),'k.');
|
| 610 |
+
plot([0 3],[.5 .5],'b:')
|
| 611 |
+
set(gca,'xlim',[0 3],'xtick',[1:1:2],'xticklabel',{'ZB','DX'},'ytick',[0:.25:1]);
|
| 612 |
+
title('TST HARD Acc');
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
% ^^^^^^
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
figure;
|
| 622 |
+
subplot(3,2,1:2)
|
| 623 |
+
hold on
|
| 624 |
+
bar(1-.3:1:8-.3,nanmean(VV.ON.TST_WITHINSET(Esx,:)),.15,'w');
|
| 625 |
+
bar(1-.1:1:8-.1,nanmean(VV.OFF.TST_WITHINSET(Esx,:)),.15,'r');
|
| 626 |
+
bar(1+.1:1:8+.1,nanmean(VV.ON.TST_WITHINSET(Lsx,:)),.15,'w');
|
| 627 |
+
bar(1+.3:1:8+.3,nanmean(VV.OFF.TST_WITHINSET(Lsx,:)),.15,'r');
|
| 628 |
+
errorbar(1-.3:1:8-.3,mean(VV.ON.TST_WITHINSET(Esx,:)),std(VV.ON.TST_WITHINSET(Esx,:))./sqrt(EarlyN),'k.');
|
| 629 |
+
errorbar(1-.1:1:8-.1,mean(VV.OFF.TST_WITHINSET(Esx,:)),std(VV.OFF.TST_WITHINSET(Esx,:))./sqrt(EarlyN),'k.');
|
| 630 |
+
errorbar(1+.1:1:8+.1,mean(VV.ON.TST_WITHINSET(Lsx,:)),std(VV.ON.TST_WITHINSET(Lsx,:))./sqrt(LateN),'k.');
|
| 631 |
+
errorbar(1+.3:1:8+.3,mean(VV.OFF.TST_WITHINSET(Lsx,:)),std(VV.OFF.TST_WITHINSET(Lsx,:))./sqrt(LateN),'k.');
|
| 632 |
+
plot([0 9],[.5 .5],'b:')
|
| 633 |
+
set(gca,'xlim',[0 9],'xtick',[1:1:8],'xticklabel',{'AC','AD','CB','BD','WY','WZ','YX','XZ'},'ytick',[0:.25:1]);
|
| 634 |
+
title('TST w/in set Acc');
|
| 635 |
+
|
| 636 |
+
subplot(3,2,3:4)
|
| 637 |
+
hold on
|
| 638 |
+
bar(1-.3:1:6-.3,nanmean(VV.ON.TST_EASY(Esx,:)),.15,'w');
|
| 639 |
+
bar(1-.1:1:6-.1,nanmean(VV.OFF.TST_EASY(Esx,:)),.15,'r');
|
| 640 |
+
bar(1+.1:1:6+.1,nanmean(VV.ON.TST_EASY(Lsx,:)),.15,'w');
|
| 641 |
+
bar(1+.3:1:6+.3,nanmean(VV.OFF.TST_EASY(Lsx,:)),.15,'r');
|
| 642 |
+
errorbar(1-.3:1:6-.3,mean(VV.ON.TST_EASY(Esx,:)),std(VV.ON.TST_EASY(Esx,:))./sqrt(EarlyN),'k.');
|
| 643 |
+
errorbar(1-.1:1:6-.1,mean(VV.OFF.TST_EASY(Esx,:)),std(VV.OFF.TST_EASY(Esx,:))./sqrt(EarlyN),'k.');
|
| 644 |
+
errorbar(1+.1:1:6+.1,mean(VV.ON.TST_EASY(Lsx,:)),std(VV.ON.TST_EASY(Lsx,:))./sqrt(LateN),'k.');
|
| 645 |
+
errorbar(1+.3:1:6+.3,mean(VV.OFF.TST_EASY(Lsx,:)),std(VV.OFF.TST_EASY(Lsx,:))./sqrt(LateN),'k.');
|
| 646 |
+
plot([0 7],[.5 .5],'b:')
|
| 647 |
+
set(gca,'xlim',[0 7],'xtick',[1:1:6],'xticklabel',{'AX','AY','AZ','WB','WC','WD'},'ytick',[0:.25:1]);
|
| 648 |
+
title('TST EASY Acc');
|
| 649 |
+
|
| 650 |
+
subplot(3,2,5)
|
| 651 |
+
hold on
|
| 652 |
+
bar(1-.3:1:4-.3,nanmean(VV.ON.TST_MEDIUM(Esx,:)),.15,'w');
|
| 653 |
+
bar(1-.1:1:4-.1,nanmean(VV.OFF.TST_MEDIUM(Esx,:)),.15,'r');
|
| 654 |
+
bar(1+.1:1:4+.1,nanmean(VV.ON.TST_MEDIUM(Lsx,:)),.15,'w');
|
| 655 |
+
bar(1+.3:1:4+.3,nanmean(VV.OFF.TST_MEDIUM(Lsx,:)),.15,'r');
|
| 656 |
+
errorbar(1-.3:1:4-.3,mean(VV.ON.TST_MEDIUM(Esx,:)),std(VV.ON.TST_MEDIUM(Esx,:))./sqrt(EarlyN),'k.');
|
| 657 |
+
errorbar(1-.1:1:4-.1,mean(VV.OFF.TST_MEDIUM(Esx,:)),std(VV.OFF.TST_MEDIUM(Esx,:))./sqrt(EarlyN),'k.');
|
| 658 |
+
errorbar(1+.1:1:4+.1,mean(VV.ON.TST_MEDIUM(Lsx,:)),std(VV.ON.TST_MEDIUM(Lsx,:))./sqrt(LateN),'k.');
|
| 659 |
+
errorbar(1+.3:1:4+.3,mean(VV.OFF.TST_MEDIUM(Lsx,:)),std(VV.OFF.TST_MEDIUM(Lsx,:))./sqrt(LateN),'k.');
|
| 660 |
+
plot([0 5],[.5 .5],'b:')
|
| 661 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'CX','CZ','YB','YD'},'ytick',[0:.25:1]);
|
| 662 |
+
title('TST MEDIUM Acc');
|
| 663 |
+
|
| 664 |
+
subplot(3,2,6)
|
| 665 |
+
hold on
|
| 666 |
+
bar(1-.3:1:2-.3,nanmean(VV.ON.TST_HARD(Esx,:)),.15,'w');
|
| 667 |
+
bar(1-.1:1:2-.1,nanmean(VV.OFF.TST_HARD(Esx,:)),.15,'r');
|
| 668 |
+
bar(1+.1:1:2+.1,nanmean(VV.ON.TST_HARD(Lsx,:)),.15,'w');
|
| 669 |
+
bar(1+.3:1:2+.3,nanmean(VV.OFF.TST_HARD(Lsx,:)),.15,'r');
|
| 670 |
+
errorbar(1-.3:1:2-.3,mean(VV.ON.TST_HARD(Esx,:)),std(VV.ON.TST_HARD(Esx,:))./sqrt(EarlyN),'k.');
|
| 671 |
+
errorbar(1-.1:1:2-.1,mean(VV.OFF.TST_HARD(Esx,:)),std(VV.OFF.TST_HARD(Esx,:))./sqrt(EarlyN),'k.');
|
| 672 |
+
errorbar(1+.1:1:2+.1,mean(VV.ON.TST_HARD(Lsx,:)),std(VV.ON.TST_HARD(Lsx,:))./sqrt(LateN),'k.');
|
| 673 |
+
errorbar(1+.3:1:2+.3,mean(VV.OFF.TST_HARD(Lsx,:)),std(VV.OFF.TST_HARD(Lsx,:))./sqrt(LateN),'k.');
|
| 674 |
+
plot([0 3],[.5 .5],'b:')
|
| 675 |
+
set(gca,'xlim',[0 3],'xtick',[1:1:2],'xticklabel',{'ZB','DX'},'ytick',[0:.25:1]);
|
| 676 |
+
title('TST HARD Acc');
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
%%
|
| 684 |
+
% % % clc;
|
| 685 |
+
% % % disp([num2str(subno),'_sess',num2str(session),'_VVbeh'])
|
| 686 |
+
% % % disp(' ')
|
| 687 |
+
% % % disp('Accuracy: >.5 shows that they learned optimal choice')
|
| 688 |
+
% % % disp([' choose: AB (90/10)',' match: WX (90/10)',' choose: CD (70/30)',' match: YZ (70/30)'])
|
| 689 |
+
% % % disp(['Test Acc: ',num2str(MEGA(row).TST_ACC)])
|
| 690 |
+
% % % disp(' ')
|
| 691 |
+
% % % disp('BIAS: >.5 is prefer Choose over Match (may only happen for first 2)')
|
| 692 |
+
% % % disp([' AW (90/90)',' CY (70/70)',' DZ (30/30)',' BX (30/30)'])
|
| 693 |
+
% % % disp(['Test BIAS: ',num2str(MEGA(row).TST_BIAS)])
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
%%
|
| 698 |
+
|
| 699 |
+
|
| 700 |
+
|
| 701 |
+
|
| 702 |
+
|
scripts/BEH_VV_CTL.m
ADDED
|
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
%% Calculate Data
|
| 2 |
+
clear all; clc
|
| 3 |
+
datapath=('Y:\EEG_Data\PDDys\BEH\');
|
| 4 |
+
cd(datapath);
|
| 5 |
+
|
| 6 |
+
SUBJS=[8010,8070,8060,890:914];
|
| 7 |
+
|
| 8 |
+
for subno=SUBJS
|
| 9 |
+
for session=1
|
| 10 |
+
|
| 11 |
+
disp(['VV Beh --- Subno: ',num2str(subno),' Session: ',num2str(session)]); disp(' ');
|
| 12 |
+
|
| 13 |
+
% TRAIN
|
| 14 |
+
fileID=dir([num2str(subno),'_S',num2str(session),'*']);
|
| 15 |
+
load(fileID.name); clear fileID
|
| 16 |
+
|
| 17 |
+
% ----- Columns are: -----
|
| 18 |
+
% 1 = block
|
| 19 |
+
% 2 = trial
|
| 20 |
+
% 3 = (cTrialID)
|
| 21 |
+
% 4 = Forced choice
|
| 22 |
+
% 6 = S1
|
| 23 |
+
% 8 = S2
|
| 24 |
+
% 10 = S1 is left
|
| 25 |
+
% 11 = Stim Selected
|
| 26 |
+
% 13 = Reward (1 or 0)
|
| 27 |
+
% 14 = RT
|
| 28 |
+
|
| 29 |
+
% ----------- Re-make With More Simpleness
|
| 30 |
+
ABchoose=[1,2]; CDchoose=[3,4]; WXmatch=[5,6]; YZmatch=[7,8];
|
| 31 |
+
for ai=1:length(task_struct.trainTrials)
|
| 32 |
+
if any(task_struct.trainTrials(ai,6)==ABchoose)
|
| 33 |
+
CONDI=1;
|
| 34 |
+
elseif any(task_struct.trainTrials(ai,6)==CDchoose)
|
| 35 |
+
CONDI=2;
|
| 36 |
+
elseif any(task_struct.trainTrials(ai,6)==WXmatch)
|
| 37 |
+
CONDI=3;
|
| 38 |
+
elseif any(task_struct.trainTrials(ai,6)==YZmatch)
|
| 39 |
+
CONDI=4;
|
| 40 |
+
end
|
| 41 |
+
TRAIN(ai,1)=CONDI; clear CONDI; % Condi: 1=ABchoose 2=CDchoose 3=ABmatch 4=CDmatch
|
| 42 |
+
TRAIN(ai,2)=mod(task_struct.trainTrials(ai,11),2); % Optimal choice (odd num are optimal: 1,3,5,7)
|
| 43 |
+
TRAIN(ai,3)=task_struct.trainTrials(ai,14); % RT
|
| 44 |
+
TRAIN(ai,4)=task_struct.trainTrials(ai,13); % was rewarded or not
|
| 45 |
+
end
|
| 46 |
+
|
| 47 |
+
% ----------- Re-make With More Simpleness
|
| 48 |
+
|
| 49 |
+
for ai=1:length(task_struct.testTrials)
|
| 50 |
+
ThisSet=task_struct.testTrials(ai,[6,8]);
|
| 51 |
+
ThisSet=str2num(cat(2,num2str(ThisSet(1)),num2str(ThisSet(2))));
|
| 52 |
+
ThisChoice=task_struct.testTrials(ai,11);
|
| 53 |
+
|
| 54 |
+
if any(ThisSet==[12,21]), CONDI='AB';
|
| 55 |
+
elseif any(ThisSet==[13,31]), CONDI='AC';
|
| 56 |
+
elseif any(ThisSet==[14,41]), CONDI='AD';
|
| 57 |
+
elseif any(ThisSet==[15,51]), CONDI='AW';
|
| 58 |
+
elseif any(ThisSet==[16,61]), CONDI='AX';
|
| 59 |
+
elseif any(ThisSet==[17,71]), CONDI='AY';
|
| 60 |
+
elseif any(ThisSet==[18,81]), CONDI='AZ';
|
| 61 |
+
elseif any(ThisSet==[23,32]), CONDI='BC';
|
| 62 |
+
elseif any(ThisSet==[24,42]), CONDI='BD';
|
| 63 |
+
elseif any(ThisSet==[25,52]), CONDI='BW';
|
| 64 |
+
elseif any(ThisSet==[26,62]), CONDI='BX';
|
| 65 |
+
elseif any(ThisSet==[27,72]), CONDI='BY';
|
| 66 |
+
elseif any(ThisSet==[28,82]), CONDI='BZ';
|
| 67 |
+
elseif any(ThisSet==[34,43]), CONDI='CD';
|
| 68 |
+
elseif any(ThisSet==[35,53]), CONDI='CW';
|
| 69 |
+
elseif any(ThisSet==[36,63]), CONDI='CX';
|
| 70 |
+
elseif any(ThisSet==[37,73]), CONDI='CY';
|
| 71 |
+
elseif any(ThisSet==[38,83]), CONDI='CZ';
|
| 72 |
+
elseif any(ThisSet==[45,54]), CONDI='DW';
|
| 73 |
+
elseif any(ThisSet==[46,64]), CONDI='DX';
|
| 74 |
+
elseif any(ThisSet==[47,74]), CONDI='DY';
|
| 75 |
+
elseif any(ThisSet==[48,84]), CONDI='DZ';
|
| 76 |
+
elseif any(ThisSet==[56,65]), CONDI='WX';
|
| 77 |
+
elseif any(ThisSet==[57,75]), CONDI='WY';
|
| 78 |
+
elseif any(ThisSet==[58,85]), CONDI='WZ';
|
| 79 |
+
elseif any(ThisSet==[67,76]), CONDI='XY';
|
| 80 |
+
elseif any(ThisSet==[68,86]), CONDI='XZ';
|
| 81 |
+
elseif any(ThisSet==[78,87]), CONDI='YZ';
|
| 82 |
+
end
|
| 83 |
+
|
| 84 |
+
TEST(ai).condi=CONDI; % Condi
|
| 85 |
+
TEST(ai).choice=ThisChoice; % This Choice
|
| 86 |
+
TEST(ai).RT=task_struct.testTrials(ai,14); % RT
|
| 87 |
+
clear ThisSet ThisChoice CONDI;
|
| 88 |
+
end
|
| 89 |
+
|
| 90 |
+
save([num2str(subno),'_sess',num2str(session),'_VVbeh.mat'],'TRAIN','TEST');
|
| 91 |
+
|
| 92 |
+
clear task_struct disp_struct AB* CD* TRAIN TEST
|
| 93 |
+
end
|
| 94 |
+
end
|
| 95 |
+
|
| 96 |
+
row=0;
|
| 97 |
+
for subno=SUBJS
|
| 98 |
+
for session=1;
|
| 99 |
+
row=row+1;
|
| 100 |
+
|
| 101 |
+
load([num2str(subno),'_sess',num2str(session),'_VVbeh.mat'],'TRAIN','TEST');
|
| 102 |
+
|
| 103 |
+
MEGA(row).ID=subno;
|
| 104 |
+
MEGA(row).session=session;
|
| 105 |
+
MEGA(row).TRN_blocks=size(TRAIN,1)./40;
|
| 106 |
+
MEGA(row).TRN_ACC=mean(TRAIN(:,2));
|
| 107 |
+
MEGA(row).TRN_RT=mean(TRAIN(:,3));
|
| 108 |
+
for bi=1:4 % Condi: 1=ABchoose 2=CDchoose 3=ABmatch 4=CDmatch
|
| 109 |
+
MINISET=TRAIN(TRAIN(:,1)==bi,:);
|
| 110 |
+
MINISET(:,[5,6])=[MINISET(2:end,[2,3]);[NaN,NaN]];
|
| 111 |
+
MINISET(:,6)=MINISET(:,6)-MINISET(:,3); % RT diff
|
| 112 |
+
% --------
|
| 113 |
+
WINS=MINISET(MINISET(:,4)==1,[2,5,6]);
|
| 114 |
+
LOSSES=MINISET(MINISET(:,4)==0,[2,5,6]);
|
| 115 |
+
% --------
|
| 116 |
+
WinStay(bi)=mean(WINS(:,1)==WINS(:,2));
|
| 117 |
+
LoseSwitch(bi)=mean(LOSSES(:,1)~=LOSSES(:,2));
|
| 118 |
+
WinSpeed(bi)=mean(WINS(WINS(:,1)==WINS(:,2),3));
|
| 119 |
+
% --------
|
| 120 |
+
clear MINISET WINS LOSSES
|
| 121 |
+
end
|
| 122 |
+
|
| 123 |
+
MEGA(row).WinStay=WinStay;
|
| 124 |
+
MEGA(row).LoseSwitch=LoseSwitch;
|
| 125 |
+
MEGA(row).WinSpeed=WinSpeed;
|
| 126 |
+
|
| 127 |
+
% ********************************************************
|
| 128 |
+
for ci=1:128
|
| 129 |
+
RT(ci,1)=TEST(ci).RT;
|
| 130 |
+
% ^^^^ General Accuracy A,B,C,D == W,X,Y,Z - 4 of each set
|
| 131 |
+
ACC=NaN; PARSE=NaN;
|
| 132 |
+
if strmatch(TEST(ci).condi,'AB');
|
| 133 |
+
if TEST(ci).choice==1, ACC=1; elseif TEST(ci).choice==2, ACC=0; end; PARSE=1;
|
| 134 |
+
elseif strmatch(TEST(ci).condi,'WX');
|
| 135 |
+
if TEST(ci).choice==5, ACC=1; elseif TEST(ci).choice==6, ACC=0; end; PARSE=2;
|
| 136 |
+
elseif strmatch(TEST(ci).condi,'CD');
|
| 137 |
+
if TEST(ci).choice==3, ACC=1; elseif TEST(ci).choice==4, ACC=0; end; PARSE=3;
|
| 138 |
+
elseif strmatch(TEST(ci).condi,'YZ');
|
| 139 |
+
if TEST(ci).choice==7, ACC=1; elseif TEST(ci).choice==8, ACC=0; end; PARSE=4;
|
| 140 |
+
end
|
| 141 |
+
% ^^^^ free vs. forced A,B,C,D == W,X,Y,Z - 8 of each set
|
| 142 |
+
BIAS=NaN;
|
| 143 |
+
if strmatch(TEST(ci).condi,'AW');
|
| 144 |
+
if TEST(ci).choice==1, BIAS=1; elseif TEST(ci).choice==5, BIAS=0; end; PARSE=5;
|
| 145 |
+
elseif strmatch(TEST(ci).condi,'CY');
|
| 146 |
+
if TEST(ci).choice==3, BIAS=1; elseif TEST(ci).choice==7, BIAS=0; end; PARSE=6;
|
| 147 |
+
elseif strmatch(TEST(ci).condi,'DZ');
|
| 148 |
+
if TEST(ci).choice==4, BIAS=1; elseif TEST(ci).choice==8, BIAS=0; end; PARSE=7;
|
| 149 |
+
elseif strmatch(TEST(ci).condi,'BX');
|
| 150 |
+
if TEST(ci).choice==2, BIAS=1; elseif TEST(ci).choice==6, BIAS=0; end; PARSE=8;
|
| 151 |
+
end
|
| 152 |
+
% ^^^^
|
| 153 |
+
WITHINSET=NaN;
|
| 154 |
+
if strmatch(TEST(ci).condi,'AC');
|
| 155 |
+
if TEST(ci).choice==1, WITHINSET=1; elseif TEST(ci).choice==3, WITHINSET=0; end; PARSE=9;
|
| 156 |
+
elseif strmatch(TEST(ci).condi,'AD');
|
| 157 |
+
if TEST(ci).choice==1, WITHINSET=1; elseif TEST(ci).choice==4, WITHINSET=0; end; PARSE=10;
|
| 158 |
+
elseif strmatch(TEST(ci).condi,'BC');
|
| 159 |
+
if TEST(ci).choice==3, WITHINSET=1; elseif TEST(ci).choice==2, WITHINSET=0; end; PARSE=11;
|
| 160 |
+
elseif strmatch(TEST(ci).condi,'BD');
|
| 161 |
+
if TEST(ci).choice==4, WITHINSET=1; elseif TEST(ci).choice==2, WITHINSET=0; end; PARSE=12;
|
| 162 |
+
elseif strmatch(TEST(ci).condi,'WY');
|
| 163 |
+
if TEST(ci).choice==5, WITHINSET=1; elseif TEST(ci).choice==7, WITHINSET=0; end; PARSE=13;
|
| 164 |
+
elseif strmatch(TEST(ci).condi,'WZ');
|
| 165 |
+
if TEST(ci).choice==5, WITHINSET=1; elseif TEST(ci).choice==8, WITHINSET=0; end; PARSE=14;
|
| 166 |
+
elseif strmatch(TEST(ci).condi,'XY');
|
| 167 |
+
if TEST(ci).choice==7, WITHINSET=1; elseif TEST(ci).choice==6, WITHINSET=0; end; PARSE=15;
|
| 168 |
+
elseif strmatch(TEST(ci).condi,'XZ');
|
| 169 |
+
if TEST(ci).choice==8, WITHINSET=1; elseif TEST(ci).choice==6, WITHINSET=0; end; PARSE=16;
|
| 170 |
+
end
|
| 171 |
+
% ^^^^
|
| 172 |
+
EASY=NaN;
|
| 173 |
+
if strmatch(TEST(ci).condi,'AX');
|
| 174 |
+
if TEST(ci).choice==1, EASY=1; elseif TEST(ci).choice==5, EASY=0; end; PARSE=17;
|
| 175 |
+
elseif strmatch(TEST(ci).condi,'AY');
|
| 176 |
+
if TEST(ci).choice==1, EASY=1; elseif TEST(ci).choice==7, EASY=0; end; PARSE=18;
|
| 177 |
+
elseif strmatch(TEST(ci).condi,'AZ');
|
| 178 |
+
if TEST(ci).choice==1, EASY=1; elseif TEST(ci).choice==8, EASY=0; end; PARSE=19;
|
| 179 |
+
elseif strmatch(TEST(ci).condi,'BW');
|
| 180 |
+
if TEST(ci).choice==5, EASY=1; elseif TEST(ci).choice==2, EASY=0; end; PARSE=20;
|
| 181 |
+
elseif strmatch(TEST(ci).condi,'CW');
|
| 182 |
+
if TEST(ci).choice==5, EASY=1; elseif TEST(ci).choice==3, EASY=0; end; PARSE=21;
|
| 183 |
+
elseif strmatch(TEST(ci).condi,'DW');
|
| 184 |
+
if TEST(ci).choice==5, EASY=1; elseif TEST(ci).choice==4, EASY=0; end; PARSE=22;
|
| 185 |
+
end
|
| 186 |
+
% ^^^^
|
| 187 |
+
MEDIUM=NaN;
|
| 188 |
+
if strmatch(TEST(ci).condi,'CX');
|
| 189 |
+
if TEST(ci).choice==3, MEDIUM=1; elseif TEST(ci).choice==6, MEDIUM=0; end; PARSE=23;
|
| 190 |
+
elseif strmatch(TEST(ci).condi,'CZ');
|
| 191 |
+
if TEST(ci).choice==3, MEDIUM=1; elseif TEST(ci).choice==8, MEDIUM=0; end; PARSE=24;
|
| 192 |
+
elseif strmatch(TEST(ci).condi,'BY');
|
| 193 |
+
if TEST(ci).choice==7, MEDIUM=1; elseif TEST(ci).choice==2, MEDIUM=0; end; PARSE=25;
|
| 194 |
+
elseif strmatch(TEST(ci).condi,'DY');
|
| 195 |
+
if TEST(ci).choice==7, MEDIUM=1; elseif TEST(ci).choice==4, MEDIUM=0; end; PARSE=26;
|
| 196 |
+
end
|
| 197 |
+
% ^^^^
|
| 198 |
+
HARD=NaN;
|
| 199 |
+
if strmatch(TEST(ci).condi,'BZ');
|
| 200 |
+
if TEST(ci).choice==8, HARD=1; elseif TEST(ci).choice==2, HARD=0; end; PARSE=27;
|
| 201 |
+
elseif strmatch(TEST(ci).condi,'DX');
|
| 202 |
+
if TEST(ci).choice==4, HARD=1; elseif TEST(ci).choice==6, HARD=0; end; PARSE=28;
|
| 203 |
+
end
|
| 204 |
+
% ^^^^
|
| 205 |
+
TST_ACC(ci,1)=ACC;
|
| 206 |
+
TST_BIAS(ci,1)=BIAS;
|
| 207 |
+
TST_WITHINSET(ci,1)=WITHINSET;
|
| 208 |
+
TST_EASY(ci,1)=EASY;
|
| 209 |
+
TST_MEDIUM(ci,1)=MEDIUM;
|
| 210 |
+
TST_HARD(ci,1)=HARD;
|
| 211 |
+
TST_PARSE(ci,1)=PARSE;
|
| 212 |
+
clear ACC BIAS WITHINSET EASY MEDIUM HARD PARSE;
|
| 213 |
+
end
|
| 214 |
+
|
| 215 |
+
for di=1:4
|
| 216 |
+
ACCURACIES(di)=nanmean(TST_ACC(TST_PARSE==di));
|
| 217 |
+
end
|
| 218 |
+
for di=5:8
|
| 219 |
+
BIASES(di-4)=nanmean(TST_BIAS(TST_PARSE==di));
|
| 220 |
+
end
|
| 221 |
+
for di=9:16
|
| 222 |
+
WITHINSETS(di-8)=nanmean(TST_WITHINSET(TST_PARSE==di));
|
| 223 |
+
end
|
| 224 |
+
for di=17:22
|
| 225 |
+
EASYS(di-16)=nanmean(TST_EASY(TST_PARSE==di));
|
| 226 |
+
end
|
| 227 |
+
for di=23:26
|
| 228 |
+
MEDIUMS(di-22)=nanmean(TST_MEDIUM(TST_PARSE==di));
|
| 229 |
+
end
|
| 230 |
+
for di=27:28
|
| 231 |
+
HARDS(di-26)=nanmean(TST_HARD(TST_PARSE==di));
|
| 232 |
+
end
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
MEGA(row).TST_ACC=ACCURACIES;
|
| 236 |
+
MEGA(row).TST_BIAS=BIASES;
|
| 237 |
+
MEGA(row).TST_WITHINSET=WITHINSETS;
|
| 238 |
+
MEGA(row).TST_EASY=EASYS;
|
| 239 |
+
MEGA(row).TST_MEDIUM=MEDIUMS;
|
| 240 |
+
MEGA(row).TST_HARD=HARDS;
|
| 241 |
+
MEGA(row).TST_RT=mean(RT);
|
| 242 |
+
|
| 243 |
+
clearvars -except MEGA subjcount subno session RT row ONOFF SUBJS;
|
| 244 |
+
end
|
| 245 |
+
end
|
| 246 |
+
save('VV_Behavior_CTL.mat','MEGA');
|
| 247 |
+
|
| 248 |
+
clear RT row session subno
|
| 249 |
+
|
| 250 |
+
%%
|
| 251 |
+
|
| 252 |
+
row=0;
|
| 253 |
+
for subno=SUBJS
|
| 254 |
+
row=row+1;
|
| 255 |
+
CTL.ID(row,:)=MEGA(row).ID;
|
| 256 |
+
CTL.session(row,:)=MEGA(row).session;
|
| 257 |
+
CTL.TRN_ACC(row,:)=MEGA(row).TRN_ACC;
|
| 258 |
+
CTL.TRN_RT(row,:)=MEGA(row).TRN_RT;
|
| 259 |
+
CTL.WinStay(row,:)=MEGA(row).WinStay;
|
| 260 |
+
CTL.LoseSwitch(row,:)=MEGA(row).LoseSwitch;
|
| 261 |
+
CTL.WinSpeed(row,:)=MEGA(row).WinSpeed;
|
| 262 |
+
CTL.TST_ACC(row,:)=MEGA(row).TST_ACC;
|
| 263 |
+
CTL.TST_BIAS(row,:)=MEGA(row).TST_BIAS;
|
| 264 |
+
CTL.TST_WITHINSET(row,:)=MEGA(row).TST_WITHINSET;
|
| 265 |
+
CTL.TST_EASY(row,:)=MEGA(row).TST_EASY;
|
| 266 |
+
CTL.TST_MEDIUM(row,:)=MEGA(row).TST_MEDIUM;
|
| 267 |
+
CTL.TST_HARD(row,:)=MEGA(row).TST_HARD;
|
| 268 |
+
CTL.TST_RT(row,:)=MEGA(row).TST_RT;
|
| 269 |
+
CTL.Blocks(row,:)=MEGA(mi).TRN_blocks;
|
| 270 |
+
end
|
| 271 |
+
save('VV_Behavior_CTL.mat','MEGA','CTL');
|
| 272 |
+
|
| 273 |
+
BigN=length(SUBJS);
|
| 274 |
+
jitter=rand(1,BigN)./2.5; jitter=jitter-mean(jitter);
|
| 275 |
+
%%
|
| 276 |
+
figure;
|
| 277 |
+
subplot(1,5,1); hold on
|
| 278 |
+
bar(1,mean(CTL.TRN_ACC),'g');
|
| 279 |
+
errorbar(1,mean(CTL.TRN_ACC),std(CTL.TRN_ACC)./sqrt(BigN),'k.');
|
| 280 |
+
set(gca,'xlim',[0 2],'xtick',[1:1:1],'xticklabel',{'CTL'},'ylim',[.5 1]);
|
| 281 |
+
title('TRN Acc');
|
| 282 |
+
|
| 283 |
+
subplot(1,5,2:3); hold on
|
| 284 |
+
bar(1:4,mean(CTL.TST_ACC),.4,'g');
|
| 285 |
+
errorbar(1:4,mean(CTL.TST_ACC),std(CTL.TST_ACC)./sqrt(BigN),'k.');
|
| 286 |
+
plot(1:4,CTL.TST_ACC,'b.');
|
| 287 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'AB','WX','CD','YZ'});
|
| 288 |
+
title('TST Acc');
|
| 289 |
+
|
| 290 |
+
subplot(1,5,4:5); hold on
|
| 291 |
+
bar(1:4,mean(CTL.TST_BIAS),.4,'g');
|
| 292 |
+
errorbar(1:4,mean(CTL.TST_BIAS),std(CTL.TST_BIAS)./sqrt(BigN),'k.');
|
| 293 |
+
plot(1:4,CTL.TST_BIAS,'b.');
|
| 294 |
+
set(gca,'xlim',[0 5],'xtick',[1:1:4],'xticklabel',{'AW','CY','DZ','BX'});
|
| 295 |
+
title('TST BIAS');
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
%%
|
| 302 |
+
% % % clc;
|
| 303 |
+
% % % disp([num2str(subno),'_sess',num2str(session),'_VVbeh'])
|
| 304 |
+
% % % disp(' ')
|
| 305 |
+
% % % disp('Accuracy: >.5 shows that they learned optimal choice')
|
| 306 |
+
% % % disp([' choose: AB (90/10)',' match: WX (90/10)',' choose: CD (70/30)',' match: YZ (70/30)'])
|
| 307 |
+
% % % disp(['Test Acc: ',num2str(MEGA(row).TST_ACC)])
|
| 308 |
+
% % % disp(' ')
|
| 309 |
+
% % % disp('BIAS: >.5 is prefer Choose over Match (may only happen for first 2)')
|
| 310 |
+
% % % disp([' AW (90/90)',' CY (70/70)',' DZ (30/30)',' BX (30/30)'])
|
| 311 |
+
% % % disp(['Test BIAS: ',num2str(MEGA(row).TST_BIAS)])
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
%%
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
|
scripts/VV_Behavior.mat
ADDED
|
Binary file (8.86 kB). View file
|
|
|
scripts/VV_Behavior_CTL.mat
ADDED
|
Binary file (7.17 kB). View file
|
|
|
scripts/VV_Main.m
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
%% Choice Bias AKA Value of Volition Task - 4 stims ---------------- JOYSTICK + EEG
|
| 2 |
+
% Adapted from Jeff Cockburn's script by JFC 02/18/2015
|
| 3 |
+
|
| 4 |
+
% clear screen
|
| 5 |
+
clc;
|
| 6 |
+
% clear memory
|
| 7 |
+
clear all;
|
| 8 |
+
close all;
|
| 9 |
+
|
| 10 |
+
%%%%%%%%%%%%%%%%%%
|
| 11 |
+
% struct holding info need to present and track data
|
| 12 |
+
disp_struct = struct();
|
| 13 |
+
% struct to hold experiment parameters
|
| 14 |
+
task_struct = struct();
|
| 15 |
+
|
| 16 |
+
% will store all subject trials
|
| 17 |
+
allTrainTrials = [];
|
| 18 |
+
allTestTrials = [];
|
| 19 |
+
% start time for the experiment
|
| 20 |
+
task_struct.startTime = GetSecs();
|
| 21 |
+
|
| 22 |
+
% set the randome seed
|
| 23 |
+
RandStream.setGlobalStream(RandStream('mt19937ar','seed',sum(100*clock)));
|
| 24 |
+
|
| 25 |
+
% track the start time for the experiment
|
| 26 |
+
experiemtn_start = GetSecs();
|
| 27 |
+
|
| 28 |
+
% get the subject number for data storage
|
| 29 |
+
subject_number = input('Enter the subject number :\n','s');
|
| 30 |
+
session = input('Is this the first or second visit? (enter 1 or 2):\n','s'); session=str2num(session);
|
| 31 |
+
% Pick 1 or 2 screens (if 1, put 0, if 2, put 1)
|
| 32 |
+
SCREENS=2;
|
| 33 |
+
% build the file name
|
| 34 |
+
file_name = [num2str(subject_number) '_S' num2str(session) '_' datestr(now, 'mm-dd-yyyy_HH-MM-SS')];
|
| 35 |
+
|
| 36 |
+
% *********% *********% *********% *********% *********% *********% *********
|
| 37 |
+
% Initialize joystick
|
| 38 |
+
addpath(genpath('C:\Users\GA217B\Desktop\PDDys Suite\JoyMEX'));
|
| 39 |
+
JoyMEX('init',0);
|
| 40 |
+
% ********* Call JoyTest to get these trigger numbers for each device
|
| 41 |
+
LEFTKEY=5;
|
| 42 |
+
RIGHTKEY=6;
|
| 43 |
+
% Initialize EEG triggers
|
| 44 |
+
ioObject = io64;
|
| 45 |
+
LTP1address = hex2dec('C050');
|
| 46 |
+
status = io64(ioObject);
|
| 47 |
+
% *********% *********% *********% *********% *********% *********% *********
|
| 48 |
+
|
| 49 |
+
% hide the cursor
|
| 50 |
+
HideCursor();
|
| 51 |
+
|
| 52 |
+
% skip the screen test for now
|
| 53 |
+
Screen('Preference', 'SkipSyncTests', 1);
|
| 54 |
+
% disable user responses from being displayed
|
| 55 |
+
ListenChar(2);
|
| 56 |
+
% ensure similar keyboard capture across platforms
|
| 57 |
+
KbName('UnifyKeyNames');
|
| 58 |
+
|
| 59 |
+
% initialize
|
| 60 |
+
[disp_struct, task_struct] = taskInit(disp_struct, task_struct, SCREENS, session, LEFTKEY, RIGHTKEY);
|
| 61 |
+
|
| 62 |
+
%%%%%%%%%%%%%%%%%%%%%%%%%
|
| 63 |
+
% INSTRUCT
|
| 64 |
+
train_Inst1(disp_struct);
|
| 65 |
+
train_Inst2(disp_struct);
|
| 66 |
+
%
|
| 67 |
+
instruct_slide = Screen('MakeTexture', disp_struct.wPtr, imread(['../images/Slide1.jpg']));
|
| 68 |
+
Screen('DrawTexture', disp_struct.wPtr, instruct_slide);
|
| 69 |
+
Screen(disp_struct.wPtr, 'Flip');KbWait([],3); %Waits for keyboard(any) press
|
| 70 |
+
%
|
| 71 |
+
train_Inst3(disp_struct);
|
| 72 |
+
%
|
| 73 |
+
instruct_slide = Screen('MakeTexture', disp_struct.wPtr, imread(['../images/Slide2.jpg']));
|
| 74 |
+
Screen('DrawTexture', disp_struct.wPtr, instruct_slide);
|
| 75 |
+
Screen(disp_struct.wPtr, 'Flip');KbWait([],3); %Waits for keyboard(any) press
|
| 76 |
+
instruct_slide = Screen('MakeTexture', disp_struct.wPtr, imread(['../images/Slide3.jpg']));
|
| 77 |
+
Screen('DrawTexture', disp_struct.wPtr, instruct_slide);
|
| 78 |
+
Screen(disp_struct.wPtr, 'Flip');KbWait([],3); %Waits for keyboard(any) press
|
| 79 |
+
%
|
| 80 |
+
train_Inst4(disp_struct);
|
| 81 |
+
%
|
| 82 |
+
instruct_slide = Screen('MakeTexture', disp_struct.wPtr, imread(['../images/Slide4.jpg']));
|
| 83 |
+
Screen('DrawTexture', disp_struct.wPtr, instruct_slide);
|
| 84 |
+
Screen(disp_struct.wPtr, 'Flip');KbWait([],3); %Waits for keyboard(any) press
|
| 85 |
+
%
|
| 86 |
+
train_Inst5(disp_struct);
|
| 87 |
+
runPractice(disp_struct, task_struct, ioObject, LTP1address);
|
| 88 |
+
train_Inst_Xtra(disp_struct);
|
| 89 |
+
train_Inst_Xtra2(disp_struct);
|
| 90 |
+
train_Inst6(disp_struct);
|
| 91 |
+
|
| 92 |
+
%%%%%%%%%%%%%%%%%%%
|
| 93 |
+
% TRAIN
|
| 94 |
+
trainDone = false;
|
| 95 |
+
trainBlock = 0;
|
| 96 |
+
while ~trainDone
|
| 97 |
+
trainBlock = trainBlock + 1;
|
| 98 |
+
|
| 99 |
+
% build the training trials
|
| 100 |
+
trainTrials = buildTrainTrials(disp_struct, task_struct);
|
| 101 |
+
trainTrials(:, task_struct.cBlock) = trainBlock;
|
| 102 |
+
trainTrials(:, task_struct.cTrialType) = task_struct.TRAIN;
|
| 103 |
+
|
| 104 |
+
% loop through each trial
|
| 105 |
+
tI = 1;
|
| 106 |
+
while tI <= size(trainTrials,1)
|
| 107 |
+
trainTrials(tI,:) = runTrainTrial(disp_struct, task_struct, trainTrials(tI,:), ioObject, LTP1address);
|
| 108 |
+
|
| 109 |
+
% was this a free-choice trial?
|
| 110 |
+
if trainTrials(tI, task_struct.cTrialCond) == task_struct.FC
|
| 111 |
+
% find it's no-choice pair, and set the resp/feedback
|
| 112 |
+
ncI = find( trainTrials(:, task_struct.cTrialID) == trainTrials(tI, task_struct.cTrialID) & trainTrials(:, task_struct.cTrialCond) == task_struct.NC );
|
| 113 |
+
trainTrials(ncI, task_struct.cRespAct) = trainTrials(tI, task_struct.cRespAct) + task_struct.ncAdjust;
|
| 114 |
+
trainTrials(ncI, task_struct.cRespRew) = trainTrials(tI, task_struct.cRespRew);
|
| 115 |
+
end
|
| 116 |
+
|
| 117 |
+
% move trial if FC or match under RT limit - otherwise repeat
|
| 118 |
+
if trainTrials(tI, task_struct.cRespAct) ~= disp_struct.RESP_SLOW && (trainTrials(tI, task_struct.cTrialCond) == task_struct.FC || trainTrials(tI, task_struct.cMatch))
|
| 119 |
+
tI = tI + 1;
|
| 120 |
+
end
|
| 121 |
+
end
|
| 122 |
+
|
| 123 |
+
% store all training from the current block
|
| 124 |
+
allTrainTrials = [allTrainTrials; trainTrials];
|
| 125 |
+
|
| 126 |
+
% check to see if we've exceeded the max # of blocks
|
| 127 |
+
if trainBlock >= task_struct.maxTrain
|
| 128 |
+
trainDone = true;
|
| 129 |
+
elseif trainBlock >= task_struct.minTrain
|
| 130 |
+
% check performance for each stim pair
|
| 131 |
+
perfAB = mean(trainTrials(trainTrials(:, task_struct.cS1) == task_struct.sCodes.Afc, task_struct.cRespAct) == task_struct.sCodes.Afc);
|
| 132 |
+
perfCD = mean(trainTrials(trainTrials(:, task_struct.cS1) == task_struct.sCodes.Cfc, task_struct.cRespAct) == task_struct.sCodes.Cfc);
|
| 133 |
+
|
| 134 |
+
% did they meet performance threshold on all stim pairs
|
| 135 |
+
trainDone = perfAB >= task_struct.minPerf(1) && perfCD >= task_struct.minPerf(2);
|
| 136 |
+
end
|
| 137 |
+
|
| 138 |
+
% take a break
|
| 139 |
+
if ~trainDone
|
| 140 |
+
trainBreak(disp_struct);
|
| 141 |
+
end
|
| 142 |
+
end % while still training
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
%%%%%%%%%%%%%%%%%%%
|
| 146 |
+
% TEST
|
| 147 |
+
test_Inst1(disp_struct);
|
| 148 |
+
testTrials = buildTestTrials(disp_struct, task_struct);
|
| 149 |
+
tI = 1;
|
| 150 |
+
% run through all the test trials
|
| 151 |
+
while tI <= size(testTrials,1)
|
| 152 |
+
testTrials(tI,:) = runTestTrial(disp_struct, task_struct, testTrials(tI,:), ioObject, LTP1address);
|
| 153 |
+
|
| 154 |
+
% move to the next trial if valid response
|
| 155 |
+
if testTrials(tI, task_struct.cRespAct) ~= disp_struct.RESP_SLOW
|
| 156 |
+
tI = tI + 1;
|
| 157 |
+
end
|
| 158 |
+
end % while not done test trials
|
| 159 |
+
% store all test trials
|
| 160 |
+
allTestTrials = testTrials;
|
| 161 |
+
|
| 162 |
+
% final note to the subject
|
| 163 |
+
taskDone(disp_struct);
|
| 164 |
+
|
| 165 |
+
% store task data
|
| 166 |
+
task_struct.endTime = GetSecs();
|
| 167 |
+
task_struct.expTime = task_struct.endTime - task_struct.startTime;
|
| 168 |
+
task_struct.trainTrials = allTrainTrials;
|
| 169 |
+
task_struct.testTrials = allTestTrials;
|
| 170 |
+
% save to file
|
| 171 |
+
save( fullfile('..', 'Data', file_name), 'task_struct', 'disp_struct');
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
% clean up
|
| 175 |
+
sca;
|
| 176 |
+
ListenChar();
|
| 177 |
+
ShowCursor();
|
scripts/VV_Triggers.xlsx
ADDED
|
Binary file (9.08 kB). View file
|
|
|
scripts/buildTestTrials.m
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function trials = buildTestTrials(disp_struct, task_struct)
|
| 2 |
+
|
| 3 |
+
% full cross-combination of all stimuli
|
| 4 |
+
[p,q] = meshgrid(1:length(task_struct.pWin), 1:length(task_struct.pWin));
|
| 5 |
+
pairs = repmat([p(:) q(:)], 2, 1);
|
| 6 |
+
% remove stimuli paired with themselves
|
| 7 |
+
pairs( pairs(:,1) == pairs(:,2), : ) = [];
|
| 8 |
+
% double the bias pairs
|
| 9 |
+
pairs = [pairs; repmat([1 2 3 4; 5 6 7 8]', 4, 1)];
|
| 10 |
+
|
| 11 |
+
% define the trials
|
| 12 |
+
trials = nan(size(pairs, 1), task_struct.cRT);
|
| 13 |
+
trials(:, task_struct.cBlock) = 0;
|
| 14 |
+
trials(:, task_struct.cTrialNum) = 1:size(trials, 1);
|
| 15 |
+
trials(:, task_struct.cTrialID) = 1:size(trials, 1);
|
| 16 |
+
trials(:, task_struct.cTrialCond) = task_struct.FC;
|
| 17 |
+
trials(:, task_struct.cTrialType) = task_struct.TEST;
|
| 18 |
+
trials(:, task_struct.cS1) = pairs(:, 1);
|
| 19 |
+
trials(:, task_struct.cS2) = pairs(:, 2);
|
| 20 |
+
trials(:, task_struct.cIsS1Left) = rand(size(trials, 1), 1) > 0.5;
|
| 21 |
+
|
| 22 |
+
% randomize
|
| 23 |
+
trials = trials(randperm(size(trials,1)), :);
|
| 24 |
+
end % function
|
scripts/buildTrainTrials.m
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function trials = buildTrainTrials(disp_struct, task_struct)
|
| 2 |
+
|
| 3 |
+
% define each fc stimulus pair trial
|
| 4 |
+
stimPairs = [1,2; 3,4;];
|
| 5 |
+
|
| 6 |
+
% will hold all the trials
|
| 7 |
+
fcTrials = [];
|
| 8 |
+
|
| 9 |
+
% loop through each pair
|
| 10 |
+
for pI = 1 : size(stimPairs, 1)
|
| 11 |
+
% will hold the stimulus trials
|
| 12 |
+
pairTrials = nan(task_struct.numTrainReps, task_struct.cRT);
|
| 13 |
+
pairTrials(:, task_struct.cTrialCond) = task_struct.FC;
|
| 14 |
+
startID = 1 + 10*(pI - 1);
|
| 15 |
+
pairTrials(:, task_struct.cTrialID) = startID:(startID+task_struct.numTrainReps-1);
|
| 16 |
+
|
| 17 |
+
% specs for card 1
|
| 18 |
+
pairTrials(:,task_struct.cS1) = stimPairs(pI, 1);
|
| 19 |
+
stim1Win = rand(task_struct.numTrainReps, 1) <= task_struct.pWin(stimPairs(pI, 1));
|
| 20 |
+
pairTrials(stim1Win,task_struct.cS1Rew) = task_struct.WIN;
|
| 21 |
+
pairTrials(~stim1Win,task_struct.cS1Rew) = task_struct.LOSS;
|
| 22 |
+
% specs for card 2
|
| 23 |
+
pairTrials(:,task_struct.cS2) = stimPairs(pI, 2);
|
| 24 |
+
stim2Win = rand(task_struct.numTrainReps, 1) <= task_struct.pWin(stimPairs(pI, 2));
|
| 25 |
+
pairTrials(stim2Win,task_struct.cS2Rew) = task_struct.WIN;
|
| 26 |
+
pairTrials(~stim2Win,task_struct.cS2Rew) = task_struct.LOSS;
|
| 27 |
+
|
| 28 |
+
% compile paired trials
|
| 29 |
+
fcTrials = [fcTrials; pairTrials];
|
| 30 |
+
|
| 31 |
+
end % for each stim pair
|
| 32 |
+
|
| 33 |
+
% get all AB, CD pairs
|
| 34 |
+
ABfc = fcTrials(fcTrials(:, task_struct.cS1) == task_struct.sCodes.Afc,:);
|
| 35 |
+
CDfc = fcTrials(fcTrials(:, task_struct.cS1) == task_struct.sCodes.Cfc,:);
|
| 36 |
+
|
| 37 |
+
% build matching nc trials
|
| 38 |
+
ABnc = ABfc;
|
| 39 |
+
ABnc(:, task_struct.cTrialCond) = task_struct.NC;
|
| 40 |
+
ABnc(:, task_struct.cS1) = ABnc(:, task_struct.cS1) + task_struct.ncAdjust;
|
| 41 |
+
ABnc(:, task_struct.cS2) = ABnc(:, task_struct.cS2) + task_struct.ncAdjust;
|
| 42 |
+
% for CD
|
| 43 |
+
CDnc = CDfc;
|
| 44 |
+
CDnc(:, task_struct.cTrialCond) = task_struct.NC;
|
| 45 |
+
CDnc(:, task_struct.cS1) = CDnc(:, task_struct.cS1) + task_struct.ncAdjust;
|
| 46 |
+
CDnc(:, task_struct.cS2) = CDnc(:, task_struct.cS2) + task_struct.ncAdjust;
|
| 47 |
+
|
| 48 |
+
% knit the fc and nc trials together
|
| 49 |
+
AB = nan(2*size(ABfc,1), size(ABfc,2));
|
| 50 |
+
AB(1:2:end) = ABfc;
|
| 51 |
+
AB(2:2:end) = ABnc;
|
| 52 |
+
% CD trials
|
| 53 |
+
CD = nan(2*size(CDfc,1), size(CDfc,2));
|
| 54 |
+
CD(1:2:end) = CDfc;
|
| 55 |
+
CD(2:2:end) = CDnc;
|
| 56 |
+
|
| 57 |
+
% now knit all AB, CD,trials toghether
|
| 58 |
+
% maintaining the order within each AB, CD and EF set
|
| 59 |
+
trials = nan(2*size(AB,1), size(AB,2));
|
| 60 |
+
slots = reshape(randperm(size(trials,1)), size(AB,1), 2);
|
| 61 |
+
% assign AB slots
|
| 62 |
+
trials(sort(slots(:,1)),:) = AB;
|
| 63 |
+
trials(sort(slots(:,2)),:) = CD;
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
trials(:, task_struct.cTrialNum) = 1:size(trials,1);
|
| 67 |
+
% stim ordering for each trial
|
| 68 |
+
trials(:,task_struct.cIsS1Left) = rand(size(trials,1), 1) >= 0.5;
|
| 69 |
+
trials(:,task_struct.cTrialType) = task_struct.TRAIN;
|
| 70 |
+
|
| 71 |
+
end % function
|
scripts/runChoice.m
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function trial = runChoice(disp_struct, task_struct, trial, TRAINTEST, ioObject, LTP1address)
|
| 2 |
+
|
| 3 |
+
% Fixation
|
| 4 |
+
JIT=Shuffle(.3:.001:.5);
|
| 5 |
+
fixation_text = '+';
|
| 6 |
+
DrawFormattedText(disp_struct.wPtr,fixation_text,'center','center');
|
| 7 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 8 |
+
WaitSecs(JIT(1));
|
| 9 |
+
|
| 10 |
+
% get the center for the screen
|
| 11 |
+
center_x = round(disp_struct.wPtr_rect(3)/2);
|
| 12 |
+
center_y = round(disp_struct.wPtr_rect(4)/2);
|
| 13 |
+
|
| 14 |
+
% define the text font
|
| 15 |
+
Screen('TextSize', disp_struct.wPtr, 40);
|
| 16 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 17 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 18 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 19 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 20 |
+
|
| 21 |
+
% stimuli bounds
|
| 22 |
+
sWidth = 300;
|
| 23 |
+
sHeight = 300;
|
| 24 |
+
sTop = center_y - sHeight/2;
|
| 25 |
+
sL_left = center_x - 80 - sWidth;
|
| 26 |
+
sR_left = center_x + 80;
|
| 27 |
+
sL_rect = [sL_left, sTop, sL_left + sWidth, sTop + sHeight];
|
| 28 |
+
sR_rect = [sR_left, sTop, sR_left + sWidth, sTop + sHeight];
|
| 29 |
+
|
| 30 |
+
% define the left and right stimuli
|
| 31 |
+
if trial(task_struct.cIsS1Left)
|
| 32 |
+
respL = trial(task_struct.cS1);
|
| 33 |
+
respR = trial(task_struct.cS2);
|
| 34 |
+
s1Rect = sL_rect;
|
| 35 |
+
s2Rect = sR_rect;
|
| 36 |
+
else
|
| 37 |
+
respL = trial(task_struct.cS2);
|
| 38 |
+
respR = trial(task_struct.cS1);
|
| 39 |
+
s1Rect = sR_rect;
|
| 40 |
+
s2Rect = sL_rect;
|
| 41 |
+
end
|
| 42 |
+
|
| 43 |
+
% show the stimuli
|
| 44 |
+
Screen('DrawTexture', disp_struct.wPtr, disp_struct.cards(trial(task_struct.cS1)), [], s1Rect);
|
| 45 |
+
Screen('DrawTexture', disp_struct.wPtr, disp_struct.cards(trial(task_struct.cS2)), [], s2Rect);
|
| 46 |
+
io64(ioObject,LTP1address,3); WaitSecs(.05); io64(ioObject,LTP1address,0);
|
| 47 |
+
|
| 48 |
+
% see if we need to frame the nc stim
|
| 49 |
+
if trial(task_struct.cTrialCond) == task_struct.NC
|
| 50 |
+
if trial(task_struct.cRespAct) == trial(task_struct.cS1)
|
| 51 |
+
ncFrameRect = s1Rect;
|
| 52 |
+
else
|
| 53 |
+
ncFrameRect = s2Rect;
|
| 54 |
+
end
|
| 55 |
+
Screen('FrameRect', disp_struct.wPtr, [0 0 255], ncFrameRect, 5);
|
| 56 |
+
end % frame the fc selected stim
|
| 57 |
+
|
| 58 |
+
% limit input
|
| 59 |
+
RestrictKeysForKbCheck([disp_struct.RESP_L, disp_struct.RESP_R]);
|
| 60 |
+
KbReleaseWait();
|
| 61 |
+
|
| 62 |
+
% flip to show the stims
|
| 63 |
+
[VBLTimestamp StimulusOnsetTime FlipTimestamp Missed Beampos] = Screen(disp_struct.wPtr, 'Flip', 0, 1);
|
| 64 |
+
% % % wait for response
|
| 65 |
+
% % [secs, keyCode, deltaSecs] = KbWait([], 2, GetSecs()+task_struct.maxRT);
|
| 66 |
+
wait_stamp=GetSecs;
|
| 67 |
+
while 1
|
| 68 |
+
[a ab] = JoyMEX(0);
|
| 69 |
+
if find(ab) ~= 0
|
| 70 |
+
if ab(1,disp_struct.RESP_L) == 1
|
| 71 |
+
stim_resp = disp_struct.RESP_L;
|
| 72 |
+
io64(ioObject,LTP1address,4); WaitSecs(.05); io64(ioObject,LTP1address,0);
|
| 73 |
+
break;
|
| 74 |
+
elseif ab(1,disp_struct.RESP_R) == 1
|
| 75 |
+
stim_resp = disp_struct.RESP_R;
|
| 76 |
+
io64(ioObject,LTP1address,5); WaitSecs(.05); io64(ioObject,LTP1address,0);
|
| 77 |
+
break;
|
| 78 |
+
end
|
| 79 |
+
elseif(GetSecs-wait_stamp) > task_struct.maxRT,
|
| 80 |
+
stim_resp=999;
|
| 81 |
+
break;
|
| 82 |
+
end
|
| 83 |
+
end
|
| 84 |
+
% compute the RT
|
| 85 |
+
RT = GetSecs - StimulusOnsetTime;
|
| 86 |
+
|
| 87 |
+
if stim_resp == disp_struct.RESP_L
|
| 88 |
+
% left-most action
|
| 89 |
+
choice = respL;
|
| 90 |
+
% hide the non-selected stim
|
| 91 |
+
Screen('FillRect', disp_struct.wPtr, [0 0 0], sR_rect);
|
| 92 |
+
% hide selection
|
| 93 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 94 |
+
WaitSecs(0.75);
|
| 95 |
+
|
| 96 |
+
elseif stim_resp == disp_struct.RESP_R
|
| 97 |
+
% right-most action
|
| 98 |
+
choice = respR;
|
| 99 |
+
% hide the non-selected stim
|
| 100 |
+
Screen('FillRect', disp_struct.wPtr, [0 0 0], sL_rect);
|
| 101 |
+
% hide selection
|
| 102 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 103 |
+
WaitSecs(0.75);
|
| 104 |
+
else
|
| 105 |
+
% they didn't respond in time
|
| 106 |
+
choice = disp_struct.RESP_SLOW;
|
| 107 |
+
end
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
% make sure they matched if this was a no-choice trial
|
| 111 |
+
if trial(task_struct.cTrialCond) == task_struct.NC && choice == trial(task_struct.cRespAct)
|
| 112 |
+
trial(task_struct.cMatch) = true;
|
| 113 |
+
else
|
| 114 |
+
trial(task_struct.cMatch) = false;
|
| 115 |
+
end
|
| 116 |
+
|
| 117 |
+
% do not update the response if they didn't match
|
| 118 |
+
if trial(task_struct.cTrialCond) == task_struct.FC || trial(task_struct.cMatch)
|
| 119 |
+
% store response
|
| 120 |
+
trial(task_struct.cRespAct) = choice;
|
| 121 |
+
trial(task_struct.cRT) = RT;
|
| 122 |
+
end
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
% --------------------------------------- FB
|
| 126 |
+
if TRAINTEST==1
|
| 127 |
+
% define the text font
|
| 128 |
+
Screen('TextSize', disp_struct.wPtr, 60);
|
| 129 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 130 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 131 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 132 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 133 |
+
|
| 134 |
+
% get feedback for the selected stimulus
|
| 135 |
+
if trial(task_struct.cTrialCond) == task_struct.NC && ~trial(task_struct.cMatch)
|
| 136 |
+
fbText = 'You must match the framed symbol';
|
| 137 |
+
respRew = NaN;
|
| 138 |
+
SIMPLEFB=1;
|
| 139 |
+
FBTRIGGER=6;
|
| 140 |
+
elseif trial(task_struct.cRespAct) == trial(task_struct.cS1)
|
| 141 |
+
% they picked stim 1
|
| 142 |
+
respRew = trial(task_struct.cS1Rew);
|
| 143 |
+
fbText = num2str(respRew);
|
| 144 |
+
SIMPLEFB=0;
|
| 145 |
+
FBTRIGGER=10+respRew;
|
| 146 |
+
elseif trial(task_struct.cRespAct) == trial(task_struct.cS2)
|
| 147 |
+
% they picked stim 2
|
| 148 |
+
respRew = trial(task_struct.cS2Rew);
|
| 149 |
+
fbText = num2str(respRew);
|
| 150 |
+
SIMPLEFB=0;
|
| 151 |
+
FBTRIGGER=10+respRew;
|
| 152 |
+
else
|
| 153 |
+
% they responded too slow
|
| 154 |
+
fbText = ['Too Slow!\nYou must respond in under ' num2str(task_struct.maxRT) ' seconds'];
|
| 155 |
+
respRew = NaN;
|
| 156 |
+
SIMPLEFB=1;
|
| 157 |
+
FBTRIGGER=7;
|
| 158 |
+
end
|
| 159 |
+
|
| 160 |
+
if respRew==0
|
| 161 |
+
Screen('TextSize', disp_struct.wPtr, 100);
|
| 162 |
+
Screen('TextColor', disp_struct.wPtr, [255 0 0]);
|
| 163 |
+
elseif respRew==1
|
| 164 |
+
Screen('TextSize', disp_struct.wPtr, 100);
|
| 165 |
+
Screen('TextColor', disp_struct.wPtr, [0 255 0]);
|
| 166 |
+
end
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
% show the feedback
|
| 170 |
+
if SIMPLEFB==1
|
| 171 |
+
io64(ioObject,LTP1address,FBTRIGGER); WaitSecs(.05); io64(ioObject,LTP1address,0);
|
| 172 |
+
DrawFormattedText(disp_struct.wPtr, fbText, 'center', 'center');
|
| 173 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 174 |
+
WaitSecs(0.75);
|
| 175 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 176 |
+
else
|
| 177 |
+
% FIRST show the selected stim
|
| 178 |
+
Screen('DrawTexture', disp_struct.wPtr, disp_struct.cards(trial(task_struct.cS1)), [], s1Rect);
|
| 179 |
+
Screen('DrawTexture', disp_struct.wPtr, disp_struct.cards(trial(task_struct.cS2)), [], s2Rect);
|
| 180 |
+
% Blank out the alternative
|
| 181 |
+
if trial(task_struct.cRespAct) == respL
|
| 182 |
+
Screen('FillRect', disp_struct.wPtr, [0 0 0], sR_rect);
|
| 183 |
+
elseif trial(task_struct.cRespAct) == respR
|
| 184 |
+
Screen('FillRect', disp_struct.wPtr, [0 0 0], sL_rect);
|
| 185 |
+
end
|
| 186 |
+
% If forced, show the box
|
| 187 |
+
if trial(task_struct.cTrialCond) == task_struct.NC
|
| 188 |
+
if trial(task_struct.cRespAct) == trial(task_struct.cS1)
|
| 189 |
+
ncFrameRect = s1Rect;
|
| 190 |
+
else
|
| 191 |
+
ncFrameRect = s2Rect;
|
| 192 |
+
end
|
| 193 |
+
Screen('FrameRect', disp_struct.wPtr, [0 0 255], ncFrameRect, 5);
|
| 194 |
+
end
|
| 195 |
+
% Next show the FB
|
| 196 |
+
io64(ioObject,LTP1address,FBTRIGGER); WaitSecs(.05); io64(ioObject,LTP1address,0);
|
| 197 |
+
DrawFormattedText(disp_struct.wPtr, fbText, 'center', 'center');
|
| 198 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 199 |
+
WaitSecs(1.25);
|
| 200 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 201 |
+
end
|
| 202 |
+
clear FBTRIGGER;
|
| 203 |
+
Screen('TextSize', disp_struct.wPtr, 60);
|
| 204 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 205 |
+
|
| 206 |
+
% store the feedback
|
| 207 |
+
trial(task_struct.cRespRew) = respRew;
|
| 208 |
+
end
|
| 209 |
+
end % function
|
| 210 |
+
|
scripts/runConditionNotice.m
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function trial = runConditionNotice(disp_struct, task_struct, trial, ioObject, LTP1address)
|
| 2 |
+
% define the text font
|
| 3 |
+
Screen('TextSize', disp_struct.wPtr, 60);
|
| 4 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 5 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 6 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 7 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 8 |
+
|
| 9 |
+
if trial(task_struct.cTrialCond) == task_struct.FC
|
| 10 |
+
% free choice trial
|
| 11 |
+
condText = 'Choose';
|
| 12 |
+
io64(ioObject,LTP1address,1); WaitSecs(.05); io64(ioObject,LTP1address,0);
|
| 13 |
+
else
|
| 14 |
+
% no-choice trial
|
| 15 |
+
Screen('TextColor', disp_struct.wPtr, [0 0 255]);
|
| 16 |
+
condText = 'Match';
|
| 17 |
+
io64(ioObject,LTP1address,2); WaitSecs(.05); io64(ioObject,LTP1address,0);
|
| 18 |
+
end
|
| 19 |
+
|
| 20 |
+
DrawFormattedText(disp_struct.wPtr, condText, 'center', 'center');
|
| 21 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 22 |
+
WaitSecs(0.5);
|
| 23 |
+
|
| 24 |
+
% clear
|
| 25 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 26 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 27 |
+
|
| 28 |
+
end % function
|
scripts/runFeedback.m
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function trial = runFeedback(disp_struct, task_struct, trial, ioObject, LTP1address)
|
| 2 |
+
% define the text font
|
| 3 |
+
Screen('TextSize', disp_struct.wPtr, 60);
|
| 4 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 5 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 6 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 7 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 8 |
+
|
| 9 |
+
% get feedback for the selected stimulus
|
| 10 |
+
if trial(task_struct.cTrialCond) == task_struct.NC && ~trial(task_struct.cMatch)
|
| 11 |
+
fbText = 'You must match the framed symbol';
|
| 12 |
+
respRew = NaN;
|
| 13 |
+
SIMPLEFB=1;
|
| 14 |
+
elseif trial(task_struct.cRespAct) == trial(task_struct.cS1)
|
| 15 |
+
% they picked stim 1
|
| 16 |
+
respRew = trial(task_struct.cS1Rew);
|
| 17 |
+
fbText = num2str(respRew);
|
| 18 |
+
SIMPLEFB=0;
|
| 19 |
+
elseif trial(task_struct.cRespAct) == trial(task_struct.cS2)
|
| 20 |
+
% they picked stim 2
|
| 21 |
+
respRew = trial(task_struct.cS2Rew);
|
| 22 |
+
fbText = num2str(respRew);
|
| 23 |
+
SIMPLEFB=0;
|
| 24 |
+
else
|
| 25 |
+
% they responded too slow
|
| 26 |
+
fbText = ['Too Slow!\nYou must respond in under ' num2str(task_struct.maxRT) ' seconds'];
|
| 27 |
+
respRew = NaN;
|
| 28 |
+
SIMPLEFB=1;
|
| 29 |
+
end
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
% define the left and right stimuli
|
| 33 |
+
center_x = round(disp_struct.wPtr_rect(3)/2);
|
| 34 |
+
center_y = round(disp_struct.wPtr_rect(4)/2);
|
| 35 |
+
sWidth = 300;
|
| 36 |
+
sHeight = 300;
|
| 37 |
+
sTop = center_y - sHeight/2;
|
| 38 |
+
sL_left = center_x - 80 - sWidth;
|
| 39 |
+
sR_left = center_x + 80;
|
| 40 |
+
sL_rect = [sL_left, sTop, sL_left + sWidth, sTop + sHeight];
|
| 41 |
+
sR_rect = [sR_left, sTop, sR_left + sWidth, sTop + sHeight];
|
| 42 |
+
if trial(task_struct.cIsS1Left)
|
| 43 |
+
respL = trial(task_struct.cS1);
|
| 44 |
+
respR = trial(task_struct.cS2);
|
| 45 |
+
s1Rect = sL_rect;
|
| 46 |
+
s2Rect = sR_rect;
|
| 47 |
+
else
|
| 48 |
+
respL = trial(task_struct.cS2);
|
| 49 |
+
respR = trial(task_struct.cS1);
|
| 50 |
+
s1Rect = sR_rect;
|
| 51 |
+
s2Rect = sL_rect;
|
| 52 |
+
end
|
| 53 |
+
if respRew==0
|
| 54 |
+
Screen('TextSize', disp_struct.wPtr, 100);
|
| 55 |
+
Screen('TextColor', disp_struct.wPtr, [255 0 0]);
|
| 56 |
+
elseif respRew==1
|
| 57 |
+
Screen('TextSize', disp_struct.wPtr, 100);
|
| 58 |
+
Screen('TextColor', disp_struct.wPtr, [0 255 0]);
|
| 59 |
+
end
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
% show the feedback
|
| 63 |
+
if SIMPLEFB==1
|
| 64 |
+
DrawFormattedText(disp_struct.wPtr, fbText, 'center', 'center');
|
| 65 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 66 |
+
WaitSecs(0.75);
|
| 67 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 68 |
+
else
|
| 69 |
+
% FIRST show the selected stim
|
| 70 |
+
Screen('DrawTexture', disp_struct.wPtr, disp_struct.cards(trial(task_struct.cS1)), [], s1Rect);
|
| 71 |
+
Screen('DrawTexture', disp_struct.wPtr, disp_struct.cards(trial(task_struct.cS2)), [], s2Rect);
|
| 72 |
+
% Blank out the alternative
|
| 73 |
+
if trial(task_struct.cRespAct) == respL
|
| 74 |
+
Screen('FillRect', disp_struct.wPtr, [0 0 0], sR_rect);
|
| 75 |
+
elseif trial(task_struct.cRespAct) == respR
|
| 76 |
+
Screen('FillRect', disp_struct.wPtr, [0 0 0], sL_rect);
|
| 77 |
+
end
|
| 78 |
+
% If forced, show the box
|
| 79 |
+
if trial(task_struct.cTrialCond) == task_struct.NC
|
| 80 |
+
if trial(task_struct.cRespAct) == trial(task_struct.cS1)
|
| 81 |
+
ncFrameRect = s1Rect;
|
| 82 |
+
else
|
| 83 |
+
ncFrameRect = s2Rect;
|
| 84 |
+
end
|
| 85 |
+
Screen('FrameRect', disp_struct.wPtr, [0 0 255], ncFrameRect, 5);
|
| 86 |
+
end
|
| 87 |
+
% Next show the FB
|
| 88 |
+
DrawFormattedText(disp_struct.wPtr, fbText, 'center', 'center');
|
| 89 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 90 |
+
WaitSecs(1.25);
|
| 91 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 92 |
+
end
|
| 93 |
+
|
| 94 |
+
Screen('TextSize', disp_struct.wPtr, 60);
|
| 95 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 96 |
+
|
| 97 |
+
% store the feedback
|
| 98 |
+
trial(task_struct.cRespRew) = respRew;
|
| 99 |
+
end % function
|
scripts/runPractice.m
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function trials = runPractice(disp_struct, task_struct, ioObject, LTP1address)
|
| 2 |
+
% use cards [13 14 15 16] for practice trials
|
| 3 |
+
|
| 4 |
+
% set up the practice trials
|
| 5 |
+
trials = nan(6, task_struct.cRT);
|
| 6 |
+
trials(:,task_struct.cBlock) = -1;
|
| 7 |
+
trials(:,task_struct.cTrialNum) = 1:size(trials,1);
|
| 8 |
+
trials(:,task_struct.cTrialID) = 1:size(trials,1);
|
| 9 |
+
trials(:,task_struct.cTrialCond) = [task_struct.FC, task_struct.NC, task_struct.FC, task_struct.FC, task_struct.NC, task_struct.NC];
|
| 10 |
+
trials(:,task_struct.cTrialType) = task_struct.PRAC;
|
| 11 |
+
trials(:,task_struct.cS1) = [13 15 13 13 15 15];
|
| 12 |
+
trials(:,task_struct.cS1Rew) = [task_struct.WIN task_struct.WIN task_struct.WIN task_struct.LOSS task_struct.LOSS task_struct.WIN];
|
| 13 |
+
trials(:,task_struct.cS2) = [14 16 14 14 16 16];
|
| 14 |
+
trials(:,task_struct.cS2Rew) = [task_struct.WIN task_struct.WIN task_struct.WIN task_struct.LOSS task_struct.LOSS task_struct.WIN];
|
| 15 |
+
trials(:,task_struct.cIsS1Left) = [1 1 0 1 0 1];
|
| 16 |
+
trials(:,task_struct.cRespAct) = [nan 15 nan nan 16 15];
|
| 17 |
+
trials(:,task_struct.cRespRew) = [nan task_struct.WIN nan nan task_struct.LOSS task_struct.WIN];
|
| 18 |
+
|
| 19 |
+
% loop through each practice trial
|
| 20 |
+
for tI = 1 : size(trials,1)
|
| 21 |
+
runTrainTrial(disp_struct, task_struct, trials(tI,:), ioObject, LTP1address);
|
| 22 |
+
end % for each trial
|
| 23 |
+
|
| 24 |
+
end % practice
|
scripts/runTestTrial.m
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function trial = runTestTrial(disp_struct, task_struct, trial, ioObject, LTP1address)
|
| 2 |
+
|
| 3 |
+
% blank screen
|
| 4 |
+
WaitSecs(0.5);
|
| 5 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 6 |
+
|
| 7 |
+
% show the stims, and get the choice
|
| 8 |
+
TRAINTEST=0;
|
| 9 |
+
trial = runChoice(disp_struct, task_struct, trial, TRAINTEST, ioObject, LTP1address);
|
| 10 |
+
|
| 11 |
+
% show too slow feedback
|
| 12 |
+
if trial(task_struct.cRespAct) == disp_struct.RESP_SLOW
|
| 13 |
+
runFeedback(disp_struct, task_struct, trial, ioObject, LTP1address);
|
| 14 |
+
end
|
| 15 |
+
|
| 16 |
+
end % function
|
scripts/runTrainTrial.m
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function trial = runTrainTrial(disp_struct, task_struct, trial, ioObject, LTP1address)
|
| 2 |
+
|
| 3 |
+
% blank screen
|
| 4 |
+
WaitSecs(1);
|
| 5 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 6 |
+
|
| 7 |
+
% show the choice condition
|
| 8 |
+
trial = runConditionNotice(disp_struct, task_struct, trial, ioObject, LTP1address);
|
| 9 |
+
WaitSecs(0.5);
|
| 10 |
+
% show the stims, and get the choice, show the FB
|
| 11 |
+
TRAINTEST=1;
|
| 12 |
+
trial = runChoice(disp_struct, task_struct, trial, TRAINTEST, ioObject, LTP1address);
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
end % function
|
scripts/taskDone.m
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function [] = taskDone(disp_struct)
|
| 2 |
+
|
| 3 |
+
% the outline task instructions
|
| 4 |
+
text_0 = '-COMPLETE-\n\n\n';
|
| 5 |
+
text_1 = 'The task is complete.\n\nPlease let the experimenter know you''re done.\n\n Thank you for your time';
|
| 6 |
+
|
| 7 |
+
Screen('TextSize', disp_struct.wPtr, 30);
|
| 8 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 9 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 10 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 11 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 12 |
+
% the number of charaters per line
|
| 13 |
+
wrap_length = 70;
|
| 14 |
+
|
| 15 |
+
% Print out the initial instructions
|
| 16 |
+
|
| 17 |
+
% Bold the intro
|
| 18 |
+
Screen('TextStyle', disp_struct.wPtr, 1);
|
| 19 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_0, 'center', 50, [], wrap_length, [], [], 1.25 );
|
| 20 |
+
|
| 21 |
+
% reset to normal font
|
| 22 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 23 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_1, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 24 |
+
|
| 25 |
+
% flip the screen
|
| 26 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 27 |
+
WaitSecs(0.5);
|
| 28 |
+
|
| 29 |
+
% wait for P
|
| 30 |
+
RestrictKeysForKbCheck(KbName('SPACE'));
|
| 31 |
+
% wait for keypress
|
| 32 |
+
KbWait([],2); % Waits for keyboard(any) press
|
| 33 |
+
end
|
scripts/taskInit.m
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
% initialize the task structure
|
| 2 |
+
function [disp_struct, task_struct] = taskInit(disp_struct, task_struct, SCREENS, session, LEFTKEY, RIGHTKEY)
|
| 3 |
+
% structure to hold data pertinant to the task
|
| 4 |
+
task_data = struct();
|
| 5 |
+
% set up the matrix columns
|
| 6 |
+
task_struct.cBlock = 1;
|
| 7 |
+
task_struct.cTrialNum = 2;
|
| 8 |
+
task_struct.cTrialID = 3;
|
| 9 |
+
task_struct.cTrialCond = 4;
|
| 10 |
+
task_struct.cTrialType = 5;
|
| 11 |
+
task_struct.cS1 = 6;
|
| 12 |
+
task_struct.cS1Rew = 7;
|
| 13 |
+
task_struct.cS2 = 8;
|
| 14 |
+
task_struct.cS2Rew = 9;
|
| 15 |
+
task_struct.cIsS1Left = 10;
|
| 16 |
+
task_struct.cRespAct = 11;
|
| 17 |
+
task_struct.cMatch = 12;
|
| 18 |
+
task_struct.cRespRew = 13;
|
| 19 |
+
task_struct.cRT = 14;
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
% maximum trial gap between free-choice and its no-choice pair
|
| 23 |
+
task_struct.maxGap = 7;
|
| 24 |
+
% code for each stimulus
|
| 25 |
+
task_struct.sCodes = struct('Afc', 1, 'Bfc', 2, 'Cfc', 3, 'Dfc', 4, 'Anc', 5, 'Bnc', 6, 'Cnc', 7, 'Dnc', 8);
|
| 26 |
+
% the reward probabilities for each stim
|
| 27 |
+
task_struct.pWin = [0.9 0.1 0.7 0.3 0.9 0.1 0.7 0.3]; % JFC changed to 90/10 and 70/30
|
| 28 |
+
% number of reps for each stimulus pair per training block
|
| 29 |
+
task_struct.numTrainReps = 10;
|
| 30 |
+
task_struct.numTestBiasReps = 10;
|
| 31 |
+
task_struct.numTestABReps = 4;
|
| 32 |
+
task_struct.numTestTrainReps = 4;
|
| 33 |
+
% index to match each free-choice with it's no-choice stim pair
|
| 34 |
+
task_struct.ncAdjust = 4;
|
| 35 |
+
|
| 36 |
+
% max response time
|
| 37 |
+
task_struct.maxRT = 4;
|
| 38 |
+
% training performance thresholds
|
| 39 |
+
task_struct.minPerf = [0.60 0.60];
|
| 40 |
+
% min/max number of training blocks
|
| 41 |
+
task_struct.minTrain = 3;
|
| 42 |
+
task_struct.maxTrain = 5;
|
| 43 |
+
|
| 44 |
+
% condition flags for each trial type
|
| 45 |
+
task_struct.NC = 0;
|
| 46 |
+
task_struct.FC = 1;
|
| 47 |
+
task_struct.PRAC = -1;
|
| 48 |
+
task_struct.TRAIN = 0;
|
| 49 |
+
task_struct.TEST = 1;
|
| 50 |
+
task_struct.WIN = 1;
|
| 51 |
+
task_struct.LOSS = 0;
|
| 52 |
+
|
| 53 |
+
% set up the response keys
|
| 54 |
+
disp_struct.RESP_L = LEFTKEY;
|
| 55 |
+
disp_struct.RESP_R = RIGHTKEY;
|
| 56 |
+
disp_struct.RESP_SLOW = -1;
|
| 57 |
+
|
| 58 |
+
% first set up the display window
|
| 59 |
+
% screenRect_debug = [0,0,1000,800]; % screen for debugging
|
| 60 |
+
screenRect_task = []; % full screen
|
| 61 |
+
% open the window
|
| 62 |
+
[wPtr,rect] = Screen('OpenWindow', SCREENS, [], screenRect_task);
|
| 63 |
+
% store the display window and it's bounds
|
| 64 |
+
disp_struct.wPtr = wPtr;
|
| 65 |
+
disp_struct.wPtr_rect = rect;
|
| 66 |
+
|
| 67 |
+
% load the images
|
| 68 |
+
if session==1
|
| 69 |
+
cardNames = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'I', 'J', 'K', 'L'}; % Practice stims repeated here b/c of laziness
|
| 70 |
+
elseif session==2
|
| 71 |
+
cardNames = {'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'I', 'J', 'K', 'L', 'I', 'J', 'K', 'L'}; % Practice stims repeated here b/c of laziness
|
| 72 |
+
else
|
| 73 |
+
disp(' '); disp(' '); disp(' '); disp('Enter a 1 or a 2 for session!'); disp(' ');
|
| 74 |
+
end
|
| 75 |
+
disp_struct.cards = nan(length(cardNames), 1);
|
| 76 |
+
for imgI = 1 : length(cardNames)
|
| 77 |
+
disp_struct.cards(imgI) = Screen('MakeTexture', disp_struct.wPtr, imread(fullfile('..', 'images', [cardNames{imgI},'.bmp'])));
|
| 78 |
+
end % for each card
|
| 79 |
+
% randomize the first 8 (I,J,K,L are for practice)
|
| 80 |
+
disp_struct.cards(1:length(task_struct.pWin)) = disp_struct.cards(randperm(length(task_struct.pWin)));
|
| 81 |
+
end % function
|
| 82 |
+
|
| 83 |
+
|
scripts/test_Inst1.m
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function [] = test_Inst1(disp_struct)
|
| 2 |
+
|
| 3 |
+
% the outline task instructions
|
| 4 |
+
text_0 = '-Instructions-\n\n\n';
|
| 5 |
+
text_1 = 'Great Job!\nIt''s time to test what you''ve learned.\n\n';
|
| 6 |
+
text_2 = 'Now you''ll be free to choose on every trial,\n but you''ll NO LONGER RECIEVE ANY FEEDBACK!\n\n';
|
| 7 |
+
text_3 = 'If you see new combinations of symbols, choose the symbol that ''feels'' most likely to award points based on what you''ve learned.\n\n If you''re not sure which one to pick,\n just go with your gut instinct.\n\n';
|
| 8 |
+
text_4 = 'Press the space bar when you''re ready to begin';
|
| 9 |
+
|
| 10 |
+
Screen('TextSize', disp_struct.wPtr, 30);
|
| 11 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 12 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 13 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 14 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 15 |
+
% the number of charaters per line
|
| 16 |
+
wrap_length = 70;
|
| 17 |
+
|
| 18 |
+
% Print out the initial instructions
|
| 19 |
+
|
| 20 |
+
% Bold the intro
|
| 21 |
+
Screen('TextStyle', disp_struct.wPtr, 1);
|
| 22 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_0, 'center', 50, [], wrap_length, [], [], 1.25 );
|
| 23 |
+
|
| 24 |
+
% reset to normal font
|
| 25 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 26 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_1, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 27 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_2, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 28 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_3, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 29 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_4, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 30 |
+
|
| 31 |
+
% flip the screen
|
| 32 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 33 |
+
WaitSecs(0.5);
|
| 34 |
+
|
| 35 |
+
% wait for P
|
| 36 |
+
RestrictKeysForKbCheck(KbName('SPACE'));
|
| 37 |
+
% wait for keypress
|
| 38 |
+
KbWait([],2); % Waits for keyboard(any) press
|
| 39 |
+
end
|
scripts/trainBreak.m
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function [] = trainBreak(disp_struct)
|
| 2 |
+
|
| 3 |
+
% the outline task instructions
|
| 4 |
+
text_0 = '-BREAK-\n\n\n';
|
| 5 |
+
text_1 = 'Press the space bar when you''re ready to continue';
|
| 6 |
+
|
| 7 |
+
Screen('TextSize', disp_struct.wPtr, 30);
|
| 8 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 9 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 10 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 11 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 12 |
+
% the number of charaters per line
|
| 13 |
+
wrap_length = 70;
|
| 14 |
+
|
| 15 |
+
% Print out the initial instructions
|
| 16 |
+
|
| 17 |
+
% Bold the intro
|
| 18 |
+
Screen('TextStyle', disp_struct.wPtr, 1);
|
| 19 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_0, 'center', 50, [], wrap_length, [], [], 1.25 );
|
| 20 |
+
|
| 21 |
+
% reset to normal font
|
| 22 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 23 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_1, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 24 |
+
|
| 25 |
+
% flip the screen
|
| 26 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 27 |
+
WaitSecs(0.5);
|
| 28 |
+
|
| 29 |
+
% wait for P
|
| 30 |
+
RestrictKeysForKbCheck(KbName('SPACE'));
|
| 31 |
+
% wait for keypress
|
| 32 |
+
KbWait([],2); % Waits for keyboard(any) press
|
| 33 |
+
end
|
scripts/train_Inst1.m
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function [] = train_Inst1(disp_struct)
|
| 2 |
+
|
| 3 |
+
% the outline task instructions
|
| 4 |
+
text_0 = '-Instructions-\n\n\n';
|
| 5 |
+
text_1 = 'Your task is to learn about various pictures.\n\n';
|
| 6 |
+
text_2 = 'Some pictures will award points more reliably than others,\n but you''ll have to learn which ones.\n\n';
|
| 7 |
+
|
| 8 |
+
Screen('TextSize', disp_struct.wPtr, 30);
|
| 9 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 10 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 11 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 12 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 13 |
+
% the number of charaters per line
|
| 14 |
+
wrap_length = 70;
|
| 15 |
+
|
| 16 |
+
% Print out the initial instructions
|
| 17 |
+
|
| 18 |
+
% Bold the intro
|
| 19 |
+
Screen('TextStyle', disp_struct.wPtr, 1);
|
| 20 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_0, 'center', 50, [], wrap_length, [], [], 1.25 );
|
| 21 |
+
|
| 22 |
+
% reset to normal font
|
| 23 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 24 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_1, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 25 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_2, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 26 |
+
|
| 27 |
+
% flip the screen
|
| 28 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 29 |
+
WaitSecs(0.5);
|
| 30 |
+
|
| 31 |
+
% wait for P
|
| 32 |
+
RestrictKeysForKbCheck(KbName('SPACE'));
|
| 33 |
+
% wait for keypress
|
| 34 |
+
KbWait([],2); % Waits for keyboard(any) press
|
| 35 |
+
end
|
scripts/train_Inst2.m
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function [] = train_Inst2(disp_struct)
|
| 2 |
+
|
| 3 |
+
% the outline task instructions
|
| 4 |
+
text_0 = '-Instructions-\n\n\n';
|
| 5 |
+
text_1 = 'On each trial, two pictures will appear on the screen simultaneously.\n\nYou can select either the pictures on the left using the LEFT TRIGGER,\n or the pictures on the right using the RIGHT TRIGGER\n\n\n\n';
|
| 6 |
+
text_2 = 'Every pictures can appear on the left or the right. This is totally random and does not influence the outcome at all.\n\n\n\n (This is only done to ensure left/right handed people don''t have an advantage.)';
|
| 7 |
+
|
| 8 |
+
Screen('TextSize', disp_struct.wPtr, 30);
|
| 9 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 10 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 11 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 12 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 13 |
+
% the number of charaters per line
|
| 14 |
+
wrap_length = 70;
|
| 15 |
+
|
| 16 |
+
% Print out the initial instructions
|
| 17 |
+
|
| 18 |
+
% Bold the intro
|
| 19 |
+
Screen('TextStyle', disp_struct.wPtr, 1);
|
| 20 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_0, 'center', 50, [], wrap_length, [], [], 1.25 );
|
| 21 |
+
|
| 22 |
+
% reset to normal font
|
| 23 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 24 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_1, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 25 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_2, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 26 |
+
|
| 27 |
+
% flip the screen
|
| 28 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 29 |
+
WaitSecs(0.5);
|
| 30 |
+
|
| 31 |
+
% wait for P
|
| 32 |
+
RestrictKeysForKbCheck(KbName('SPACE'));
|
| 33 |
+
% wait for keypress
|
| 34 |
+
KbWait([],2); % Waits for keyboard(any) press
|
| 35 |
+
end
|
scripts/train_Inst3.m
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function [] = train_Inst3(disp_struct)
|
| 2 |
+
|
| 3 |
+
% the outline task instructions
|
| 4 |
+
text_0 = '-Instructions-\n\n\n';
|
| 5 |
+
text_1 = 'The picture you select will either award you a point (+1) or not (0).\n\n\n\n There''s no *absolute* right answer, but try to pick pictures that have the best chance of awarding points.\n\n\n\n';
|
| 6 |
+
text_2 = 'At first this might seem difficult, but you''ll get lots of practice.';
|
| 7 |
+
|
| 8 |
+
Screen('TextSize', disp_struct.wPtr, 30);
|
| 9 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 10 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 11 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 12 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 13 |
+
% the number of charaters per line
|
| 14 |
+
wrap_length = 70;
|
| 15 |
+
|
| 16 |
+
% Print out the initial instructions
|
| 17 |
+
|
| 18 |
+
% Bold the intro
|
| 19 |
+
Screen('TextStyle', disp_struct.wPtr, 1);
|
| 20 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_0, 'center', 50, [], wrap_length, [], [], 1.25 );
|
| 21 |
+
|
| 22 |
+
% reset to normal font
|
| 23 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 24 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_1, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 25 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_2, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 26 |
+
|
| 27 |
+
% flip the screen
|
| 28 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 29 |
+
WaitSecs(0.5);
|
| 30 |
+
|
| 31 |
+
% wait for P
|
| 32 |
+
RestrictKeysForKbCheck(KbName('SPACE'));
|
| 33 |
+
% wait for keypress
|
| 34 |
+
KbWait([],2); % Waits for keyboard(any) press
|
| 35 |
+
end
|
scripts/train_Inst4.m
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function [] = train_Inst4(disp_struct)
|
| 2 |
+
|
| 3 |
+
% the outline task instructions
|
| 4 |
+
text_0 = '-Instructions-\n\n\n';
|
| 5 |
+
text_1 = 'OK - here''s an interesting twist: \n\n On some trials, one of the picture will be selected for you and will be framed in blue. These are called ''Match'' trials.\n\n On ''Match'' trials, you must select the framed picture.\n\n\n\n';
|
| 6 |
+
text_2 = 'On other trials you will be free to choose either picture.\n\n These are called ''Choose'' trials.';
|
| 7 |
+
|
| 8 |
+
Screen('TextSize', disp_struct.wPtr, 30);
|
| 9 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 10 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 11 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 12 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 13 |
+
% the number of charaters per line
|
| 14 |
+
wrap_length = 70;
|
| 15 |
+
|
| 16 |
+
% Print out the initial instructions
|
| 17 |
+
|
| 18 |
+
% Bold the intro
|
| 19 |
+
Screen('TextStyle', disp_struct.wPtr, 1);
|
| 20 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_0, 'center', 50, [], wrap_length, [], [], 1.25 );
|
| 21 |
+
|
| 22 |
+
% reset to normal font
|
| 23 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 24 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_1, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 25 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_2, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 26 |
+
|
| 27 |
+
% flip the screen
|
| 28 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 29 |
+
WaitSecs(0.5);
|
| 30 |
+
|
| 31 |
+
% wait for P
|
| 32 |
+
RestrictKeysForKbCheck(KbName('SPACE'));
|
| 33 |
+
% wait for keypress
|
| 34 |
+
KbWait([],2); % Waits for keyboard(any) press
|
| 35 |
+
end
|
scripts/train_Inst5.m
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function [] = train_Inst5(disp_struct)
|
| 2 |
+
|
| 3 |
+
% the outline task instructions
|
| 4 |
+
text_0 = '-Instructions-\n\n\n';
|
| 5 |
+
text_1 = 'Regardless of whether you Choose or Match on each trial,\n\n your goal is to learn which pictures are more rewarding. \n\n\n\n (Doing so will help you later in the task!)\n\n\n\n';
|
| 6 |
+
text_2 = 'The faster you learn which pictures are better,\n\n the faster you will finish!\n\n\n\n';
|
| 7 |
+
text_3 = 'Let''s try a few practice trials.';
|
| 8 |
+
|
| 9 |
+
Screen('TextSize', disp_struct.wPtr, 30);
|
| 10 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 11 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 12 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 13 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 14 |
+
% the number of charaters per line
|
| 15 |
+
wrap_length = 70;
|
| 16 |
+
|
| 17 |
+
% Print out the initial instructions
|
| 18 |
+
|
| 19 |
+
% Bold the intro
|
| 20 |
+
Screen('TextStyle', disp_struct.wPtr, 1);
|
| 21 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_0, 'center', 50, [], wrap_length, [], [], 1.25 );
|
| 22 |
+
|
| 23 |
+
% reset to normal font
|
| 24 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 25 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_1, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 26 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_2, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 27 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_3, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 28 |
+
|
| 29 |
+
% flip the screen
|
| 30 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 31 |
+
WaitSecs(0.5);
|
| 32 |
+
|
| 33 |
+
% wait for P
|
| 34 |
+
RestrictKeysForKbCheck(KbName('SPACE'));
|
| 35 |
+
% wait for keypress
|
| 36 |
+
KbWait([],2); % Waits for keyboard(any) press
|
| 37 |
+
end
|
scripts/train_Inst6.m
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function [] = train_Inst6(disp_struct)
|
| 2 |
+
|
| 3 |
+
% the outline task instructions
|
| 4 |
+
text_0 = '-Instructions-\n\n\n';
|
| 5 |
+
text_1 = 'Please let the experimenter know if you have any questions or don''t fully understand your task\n\n\n';
|
| 6 |
+
text_2 = 'Press the space bar when you''re ready to begin';
|
| 7 |
+
|
| 8 |
+
Screen('TextSize', disp_struct.wPtr, 30);
|
| 9 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 10 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 11 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 12 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 13 |
+
% the number of charaters per line
|
| 14 |
+
wrap_length = 70;
|
| 15 |
+
|
| 16 |
+
% Print out the initial instructions
|
| 17 |
+
|
| 18 |
+
% Bold the intro
|
| 19 |
+
Screen('TextStyle', disp_struct.wPtr, 1);
|
| 20 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_0, 'center', 50, [], wrap_length, [], [], 1.25 );
|
| 21 |
+
|
| 22 |
+
% reset to normal font
|
| 23 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 24 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_1, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 25 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_2, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 26 |
+
|
| 27 |
+
% flip the screen
|
| 28 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 29 |
+
WaitSecs(0.5);
|
| 30 |
+
|
| 31 |
+
% wait for P
|
| 32 |
+
RestrictKeysForKbCheck(KbName('SPACE'));
|
| 33 |
+
% wait for keypress
|
| 34 |
+
KbWait([],2); % Waits for keyboard(any) press
|
| 35 |
+
end
|
scripts/train_Inst_Xtra.m
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function [] = train_Inst_Xtra(disp_struct)
|
| 2 |
+
|
| 3 |
+
% the outline task instructions
|
| 4 |
+
text_0 = '-Instructions-\n\n\n';
|
| 5 |
+
text_1 = 'OK - here''s something *important* to remember.\n\n\n';
|
| 6 |
+
text_2 = 'The pictures are RANDOMLY selected for each person, \n\n and are PROBABILISTICALLY associated with the amount of reward. \n\n\n There is NO RELATIONSHIP between the picture type and probability of reward. \n\n\n ';
|
| 7 |
+
|
| 8 |
+
Screen('TextSize', disp_struct.wPtr, 30);
|
| 9 |
+
Screen('TextFont', disp_struct.wPtr, 'Times');
|
| 10 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 11 |
+
Screen('TextColor', disp_struct.wPtr, [255 255 255]);
|
| 12 |
+
Screen('FillRect', disp_struct.wPtr,[0 0 0]);
|
| 13 |
+
% the number of charaters per line
|
| 14 |
+
wrap_length = 70;
|
| 15 |
+
|
| 16 |
+
% Print out the initial instructions
|
| 17 |
+
|
| 18 |
+
% Bold the intro
|
| 19 |
+
Screen('TextStyle', disp_struct.wPtr, 1);
|
| 20 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_0, 'center', 50, [], wrap_length, [], [], 1.25 );
|
| 21 |
+
|
| 22 |
+
% reset to normal font
|
| 23 |
+
Screen('TextStyle', disp_struct.wPtr, 0);
|
| 24 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_1, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 25 |
+
[nx, ny, textbounds] = DrawFormattedText(disp_struct.wPtr, text_2, 'center', ny, [], wrap_length, [], [], 1.25 );
|
| 26 |
+
|
| 27 |
+
% flip the screen
|
| 28 |
+
Screen(disp_struct.wPtr, 'Flip');
|
| 29 |
+
WaitSecs(0.5);
|
| 30 |
+
|
| 31 |
+
% wait for P
|
| 32 |
+
RestrictKeysForKbCheck(KbName('SPACE'));
|
| 33 |
+
% wait for keypress
|
| 34 |
+
KbWait([],2); % Waits for keyboard(any) press
|
| 35 |
+
end
|