File size: 10,660 Bytes
b0cc889 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
function [EEG,bad_chans,bad_epochs,bad_ICAs]=APPLE_OCDII(EEG,eeg_chans,ref_chan,Do_ICA,subno,VEOG,appledir)
% Algorithmic Pre-Processing Line for EEG
% Intellectual Property of James F Cavanagh jcavanagh@unm.edu 2013
% Use eeglab12_0_2_1b and in the plugins folder include the following:
% FASTER 1.2.3: http://sourceforge.net/projects/faster/
% ADJUST: http://www.unicog.org/pm/pmwiki.php/MEG/RemovingArtifactsWithADJUST
% Gratton Eyeblink Correction: can't find the website, but it doesn't work well and I'm going to remove it anyways. Just have 1 for Do_ICA always.
% ===================
% MANDATORY INPUT
% ===================
% EEG - The eponymous EEGLab array
% eeg_chans - vector of EEG channels (exclude VEOG, HEOG, anything else here)
% ref_chan - Call_APPLE should have re-ref'd the data to Fz or FCz
% Do_ICA - Do ICAs or not? If no, it will run Gratton regression if there is VEOG
%
% ====================
% OPTIONAL PARAMETERS
% ====================
% SubjID - Subject ID for saving the output jpeg. Optional - will be set to 0 if empty
% VEOG - The vector of VEOG stripped from the EEG.data structure for
% use in ID'ing ICA blinks.
%
% ==============
% OUTPUT
% ==============
% EEG - interpolated with bad epochs rejected. If Gratton, eyeblinks removed.
% bad_chans
% bad_epochs
% bad_ICAs
% Start clock
tic
% Get stuff
SubjID=0;
if nargin >4
if ~isempty(subno), SubjID=subno; end
end
if nargin>5, hasVEOG=1; else hasVEOG=0; end
% Get dimensions of EEG data matrix
dims=size(EEG.data);
% Get Vertex Site
for ai=1:dims(1), Z(ai)=EEG.chanlocs(ai).Z; end
Vertex=find(Z==max(Z)); clear Z;
% Get ERP % Topo of these data prior to fixen's
TEMPPRE = pop_reref( EEG, []);
PreFixERP=eegfilt(squeeze(mean(TEMPPRE.data(Vertex,:,:),3)),TEMPPRE.srate,[],20);
PreFixERP=PreFixERP-repmat(mean(PreFixERP),1,length(PreFixERP));
% Get times irrespective of sample rate
T1=find( abs(TEMPPRE.times-300) == min(abs(TEMPPRE.times-300)) ) ;
T2=find( abs(TEMPPRE.times-400) == min(abs(TEMPPRE.times-400)) ) ;
PreFixTopo=squeeze(mean(mean(TEMPPRE.data(:,T1:T2,:),2),3)); % Topo w/ blinks
clear TEMPPRE;
%% ID bad channels
% EEGLab Function
tempeeg=EEG; % save the real data as an archive
[EEG, indelec, measure] = pop_rejchan( EEG, 'elec', eeg_chans); % process on the 'EEG' set
clear EEG; EEG=tempeeg; clear tempeeg; % save what was done to the 'EEG' set, then erase it and replace with archive
% FASTER
chan = channel_properties(EEG, eeg_chans, ref_chan);
chan_exceeded_threshold = min_z_JFC(chan); % Cols are: 1) weighted correlation, weighted variance, Hurst
FASTER_bad_chans = find(logical(chan_exceeded_threshold(:,2)+chan_exceeded_threshold(:,3)));
% Combine unique elements
TOTAL_bad_chans=unique([FASTER_bad_chans(:);indelec(:)]);
if subno==921 , TOTAL_bad_chans=unique([FASTER_bad_chans(:);indelec(:),46]); end
if subno==932 , TOTAL_bad_chans=unique([FASTER_bad_chans(:);indelec(:),9]); end
if subno==946 , TOTAL_bad_chans=unique([FASTER_bad_chans(:);indelec(:),26]); end
% INTERPOLATE
if ~isempty(TOTAL_bad_chans)
EEG.data=double(EEG.data);
EEG = pop_interp(EEG,TOTAL_bad_chans,'spherical');
end
bad_chans{1}=FASTER_bad_chans;
bad_chans{2}=indelec;
bad_chans{3}=TOTAL_bad_chans;
% % % % %% NOW re-ref to average - after interpolation and before rejection (pop_autorej requires it)
% % % % EEG = pop_reref( EEG, []);
%% ID bad epochs
% EEGLab Function
tempeeg=EEG; % same as above - this takes a while though
[EEG, rmepochs] = pop_autorej(EEG,'nogui','on');
% - here
clear EEG; EEG=tempeeg; clear tempeeg;
autorej_bad_epochs=zeros(EEG.trials,1); % vb Vectorize the output
autorej_bad_epochs(sort(rmepochs))=1;
% FASTER
epoch = epoch_properties(EEG,eeg_chans);
epoch_exceeded_threshold = min_z_JFC(epoch); % Cols are: 1) mean epoch deviation, 2) epoch variance, 3) max amplitude
FASTER_bad_epochs = logical(epoch_exceeded_threshold(:,1)+epoch_exceeded_threshold(:,2)+epoch_exceeded_threshold(:,3)); % ANYTHING marked as bad is bad
% Combine unique elements
TOTAL_bad_epochs=logical(FASTER_bad_epochs+autorej_bad_epochs);
% REJECT
binarized=zeros(1,EEG.trials);
binarized(FASTER_bad_epochs)=1; % Only the FASTER ones
EEG = pop_rejepoch(EEG,binarized,0);
goodepochs=logical(1-binarized);
EP2REJ=1;
bad_epochs{1}=FASTER_bad_epochs;
bad_epochs{2}=autorej_bad_epochs;
bad_epochs{3}=TOTAL_bad_epochs;
%% Deal with blinks
if Do_ICA==1
% Calculate kC^2 = # of data points needed
k=25; % Suggested by Onton et al.
C=dims(1)-length(TOTAL_bad_chans); % n good independent channels
sizeneeded=C^2*k;
epochsneeded=round(sizeneeded/EEG.srate); % # of epochs needed for a stable ICA solution
% ##### ##### ICA ##### #####
EEG = pop_runica(EEG,'icatype','runica'); % ,'chanind',eeg_chans(Chans4ICA)
% ADJUST
EEG.icaact = eeg_getica(EEG);
[art, horiz, vert, blink, disc, soglia_DV, diff_var, soglia_K,...
meanK, soglia_SED, SED, soglia_SAD, SAD, soglia_GDSF, GDSF, soglia_V, nuovaV]=ADJUST(EEG,'junkfile');
bad_ADJUST_ICAs=blink;
% Do VEOG correlation
if hasVEOG==1
for ai=1:size(EEG.icaact,1)
temp=squeeze(EEG.icaact(ai,:,:));
r=corrcoef(temp,VEOG(:,goodepochs));
VEOG_ICA_Corrs(ai)=abs(r(1,2)); clear temp;
end
bad_VEOG_ICAs=find(abs(zscore(VEOG_ICA_Corrs))>3);
if isempty(bad_VEOG_ICAs), bad_VEOG_ICAs=find(VEOG_ICA_Corrs==max(abs(VEOG_ICA_Corrs))); end % in case z-scores are too tightly distributed
else
bad_VEOG_ICAs=0;
end
% Bootstrap a blink template based on Gaussian distros around most frontopolar channels
% Get the most FrontoPolar Sites
for ai=1:dims(1), X(ai)=EEG.chanlocs(ai).X; end
FrontoPolars=find(X==max(X)); clear X;
% Make Gaussian Template - code taken from Mike X Cohen
for fpi=1:length(FrontoPolars)
e2use=FrontoPolars(fpi);
eucdist=zeros(1,size(EEG.icawinv,1)); topocorr=zeros(1,size(EEG.icawinv,1));
for chani=1:size(EEG.icawinv,1)
eucdist(chani)=sqrt( (EEG.chanlocs(chani).X-EEG.chanlocs(e2use).X)^2 + (EEG.chanlocs(chani).Y-EEG.chanlocs(e2use).Y)^2 + (EEG.chanlocs(chani).Z-EEG.chanlocs(e2use).Z)^2 );
end
s=30; template(fpi,:) = exp(- (eucdist.^2)/(2*s^2) );
end
template=mean(template,1);
% Get each ICA topo correlation with this topo template
for chani=1:size(EEG.icawinv,2)
topocorr(chani) = corr(EEG.icawinv(:,chani),template');
end
% Select the max correlations
bad_TEMPLATE_ICAs=find(abs(zscore(topocorr))>3);
if isempty(bad_TEMPLATE_ICAs), bad_TEMPLATE_ICAs=find(abs(topocorr)==max(abs(topocorr))); end % in case z-scores are too tightly distributed
% Aggregate all this
bad_ICAs{1}=bad_ADJUST_ICAs;
bad_ICAs{2}=bad_VEOG_ICAs;
bad_ICAs{3}=bad_TEMPLATE_ICAs;
bad_ICAs{4}=[sum(goodepochs),epochsneeded];
elseif Do_ICA~=1 && hasVEOG==1
% Do Gratton Method
EEG.data = gratton( EEG.data, VEOG(:,goodepochs), 200, 20 ); % Defaults for voltage (200 uV) and window (20 ms) | requires statistics toolbox
bad_ICAs='No ICAs, Ran Gratton';
end
%% Show Stats
elapsed=toc;
pBAD_CHANS=(length(bad_chans{3})./dims(1))*100;
pBAD_EPOCHS=(sum(bad_epochs{3})./dims(3))*100;
% Show ERP and Topo after rejecting blink ICA, but don't actually remove that from the real EEG data
tempeeg=EEG; % archive real set
EEG = pop_subcomp( EEG, bad_TEMPLATE_ICAs, 0); % remove TEMPLATE ICAs
PostFixERP=eegfilt(squeeze(mean(EEG.data(Vertex,:,:),3)),EEG.srate,[],20); % Get ERP
PostFixERP=PostFixERP-repmat(mean(PostFixERP),1,length(PostFixERP)); % Ersatz Baseline
PostFixTopo=squeeze(mean(mean(EEG.data(:,T1:T2,:),2),3)); % Topo w/o blinks
clear EEG; EEG=tempeeg; clear tempeeg; % recover archive set for output
figure;
subplot(2,3,1)
pie([dims(1)-length(bad_chans{3}),length(bad_chans{3})],[0 1],{['Good=',num2str(dims(1)-length(bad_chans{3}))],['Bad=',num2str(length(bad_chans{3}))]})
title(['Subj: ',num2str(SubjID), ' Bad Chans']);
subplot(2,3,2)
pie([dims(3)-sum(bad_epochs{EP2REJ}),sum(bad_epochs{EP2REJ})],[0 1],{['Good=',num2str(dims(3)-sum(bad_epochs{EP2REJ}))],['Bad=',num2str(sum(bad_epochs{EP2REJ}))]})
title(['Subj: ',num2str(SubjID), ' Bad Epochs']);
subplot(2,3,3)
if Do_ICA==1
text(.2, .90, ['Bad ADJUST ICAs: ',num2str(bad_ICAs{1})]);
text(.2, .75, ['Bad VEOGcorr ICAs: ',num2str(bad_ICAs{2})]);
text(.2, .60, ['Bad TEMPLATE ICAs: ',num2str(bad_ICAs{3})]);
text(.2, .45, ['Epochs Needed for ICA: ',num2str(bad_ICAs{4}(2))]);
text(.2, .30, ['Epochs in Dataset (good): ',num2str(bad_ICAs{4}(1))]);
text(.2, .15, ['Mins Elapsed: ',num2str(elapsed/60)]);
else
text(.2, .50, bad_ICAs);
text(.2, .05, ['Mins Elapsed: ',num2str(elapsed/60)]);
end
set(gca,'visible','off');
%
subplot(2,3,4)
hold on
topoplot(PreFixTopo,EEG.chanlocs);
title('Topo Before Fixes (300-400 ms)');
subplot(2,3,5)
hold on
topoplot(PostFixTopo,EEG.chanlocs);
title('Topo After Fixes (300-400 ms)');
subplot(2,3,6)
hold on
plot(EEG.times,PreFixERP,'r');
plot(EEG.times,PostFixERP,'b--');
legend({'Pre-Fixes','Post-Fixes'},'Location','SouthOutside');
title('ERP at Vertex (20 Hz Filter)');
% Save that shiznit
saveas(gcf, [appledir,num2str(SubjID),'_APPLE.png'],'png');
close all;
% Save a map of the original ICAs
pop_selectcomps(EEG, [1:30] );
saveas(gcf, [appledir,num2str(SubjID),'_APPLE_ICAs.png'],'png');
close all;
function [lengths] = min_z_JFC(list_properties,rejection_options)
if (~exist('rejection_options','var'))
rejection_options.measure=ones(1,size(list_properties,2));
rejection_options.z=3*ones(1,size(list_properties,2));
end
rejection_options.measure=logical(rejection_options.measure);
zs=list_properties-repmat(mean(list_properties,1),size(list_properties,1),1);
zs=zs./repmat(std(zs,[],1),size(list_properties,1),1);
zs(isnan(zs))=0;
%all_l = abs(zs) > repmat(rejection_options.z,size(list_properties,1),1);
%lengths = any(all_l(:,rejection_options.measure),2);
lengths = abs(zs) > repmat(rejection_options.z,size(list_properties,1),1);
%% Unused ideas
% for chani=1:length(TOTAL_bad_chans)
% goodicachans(chani,:)=eeg_chans~=TOTAL_bad_chans(chani);
% end
% Chans4ICA=(sum(goodicachans,1)./length(TOTAL_bad_chans))==1;
|