File size: 13,808 Bytes
b0cc889 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
%% Step 2 - load pre-proc'd flankers data
clear all; clc
addpath('Z:\EXPERIMENTS\Flankers t2t\');
datalocation='Y:\EEG_Data\Flankers OCDII\Processed Data\'; % Data are here
savedir='Y:\EEG_Data\Flankers OCDII\ERPs\'; % Save processed data here
cd(datalocation);
% Load up
[xls_data,xls_hdr]=xlsread('Z:\EXPERIMENTS\Flankers t2t\info.xlsx');
% Data are 60 chans * 2000 time * N epochs | Ref'd to linked mastoids
FILZ=dir('*_FLANKERS.mat');
for si=length(FILZ):-1:1
subname=FILZ(si).name;
subno=str2num(subname(1:3)); clc
% Only run the latter on subjs pre-selected to be MUY BUENO (N=46)
if ~isempty(find(xls_data(:,1)==subno))
% Only run if not already done
if 1 % ~(exist([savedir,num2str(subno),'_ERPs.mat'])==2)
% Display
disp(['DOING: ',num2str(subno)]);
% Get Subj Info
tempdat=xls_data(find(xls_data(:,1)==subno),:);
tempdat_hdr=xls_hdr(find(xls_data(:,1)==subno)+1,:); % +1 b/c of header row
SUBJINFO(1)=subno;
SUBJINFO(2)=tempdat(1);
SUBJINFO(3)=tempdat(4);
SUBJINFO(4)=tempdat(6);
SUBJINFO(5)=tempdat(7);
SUBJINFO(6)=tempdat(9);
SUBJINFO_HDR={'EEG_ID','INFO_ID','Error%','Sex','Age','OCI_Score'};
%
if ~isnan(tempdat(5))
bad_ICAs_To_Remove=tempdat(5);
elseif isnan(tempdat(5))
bad_ICAs_To_Remove=str2num(cell2mat(tempdat_hdr(5)));
end
clear tempdat tempdat_hdr;
% Load EEG
load([datalocation,subname]);
% Remove the bad ICAs:
EEG = pop_subcomp( EEG, bad_ICAs_To_Remove, 0);
% Get the good info out of the epochs
VECTOR(1:size(EEG.epoch,2),1:13)=NaN;
for ai=1:size(EEG.epoch,2)
VECTOR(ai,1)=EEG.epoch(ai).TRIALNUM;
VECTOR(ai,2)=EEG.epoch(ai).STIM;
VECTOR(ai,3)=EEG.epoch(ai).CONGRU;
VECTOR(ai,4)=EEG.epoch(ai).RightLeft;
VECTOR(ai,5)=EEG.epoch(ai).RT;
VECTOR(ai,6)=EEG.epoch(ai).ACC;
% ^^^^^^^^^^^^^^^^^^ OOPS
if ~isempty(EEG.epoch(ai).PREVTRIAL)
% ^^^^^^^^^^^^^^^^^^
VECTOR(ai,7)=EEG.epoch(ai).PREVTRIAL.TRIALNUM;
VECTOR(ai,8)=EEG.epoch(ai).PREVTRIAL.STIM;
VECTOR(ai,9)=EEG.epoch(ai).PREVTRIAL.CONGRU;
VECTOR(ai,10)=EEG.epoch(ai).PREVTRIAL.RightLeft;
VECTOR(ai,11)=EEG.epoch(ai).PREVTRIAL.RT;
VECTOR(ai,12)=EEG.epoch(ai).PREVTRIAL.ACC;
VECTOR(ai,13)=EEG.epoch(ai).PREVTRIAL.BlockStart;
end
end
% Let's just do this for ERPs - keep EEG.data structure unfiltered
dims=size(EEG.data);
FILT.data=eegfilt(EEG.data,500,[],20);
FILT.data=reshape(FILT.data,dims(1),dims(2),dims(3));
% Set Params
tx=-2000:2:1998;
b1=find(tx==-200); b2=find(tx==0);
t1=find(tx==-500); t2=find(tx==1000);
N2topo1=find(tx==200); N2topo2=find(tx==350); N2toporangetot=200:2:350;
P3topo1=find(tx==400); P3topo2=find(tx==600); P3toporangetot=400:2:600;
tx2disp=-500:2:1000;
% Basecor your ERPs here so they are pretty.
BASE=squeeze( mean(FILT.data(:,b1:b2,:),2) );
for ai=1:dims(1)
FILT.data(ai,:,:)=squeeze(FILT.data(ai,:,:))-repmat( BASE(ai,:),dims(2),1 );
end
% $$$$$$$$$$$$$$$$$$$ Parse condis and save ERPs $$$$$$$$$$$$$$$$$$$ %
% If blockstart, then NaN the row
VECTOR(VECTOR(:,13)==1,[3,4,9,10])=NaN;
% If error, then NaN the row
VECTOR(VECTOR(:,6)==0,[3,4,9,10])=NaN;
% If post-error, then NaN the row
temp=VECTOR(:,6)==0;
VECTOR(logical([0;temp(1:end-1)]),[3,4,9,10])=NaN; clear temp;
% If RT<200 or NaN, then NaN the row
VECTOR(VECTOR(:,5)<200,[3,4,9,10])=NaN;
VECTOR(isnan(VECTOR(:,5)),[3,4,9,10])=NaN;
% If any >2, all are NaN
temp=sum((VECTOR(:,[3,4,9,10])>2)')';
VECTOR(temp>0,[3,4,9,10])=NaN;
% If any are NaN, all are NaN
temp=sum(isnan(VECTOR(:,[3,4,9,10]))')';
VECTOR(temp>0,[3,4,9,10])=NaN;
for ai=1:length(VECTOR)
if ~isnan(VECTOR(ai,3))
% ---------------------- congruent (1) or conflict (0)
if VECTOR(ai,9)==1 && VECTOR(ai,3)==1, GRATTON=1; % cC
elseif VECTOR(ai,9)==1 && VECTOR(ai,3)==0, GRATTON=2; % cI
elseif VECTOR(ai,9)==0 && VECTOR(ai,3)==1, GRATTON=3; % iC
elseif VECTOR(ai,9)==0 && VECTOR(ai,3)==0, GRATTON=4; % iI
end
% ---------------------- [Right=1, Left=2]
if VECTOR(ai,10)==1 && VECTOR(ai,4)==1, RESPS=1; % rR
elseif VECTOR(ai,10)==2 && VECTOR(ai,4)==2, RESPS=1; % lL
elseif VECTOR(ai,10)==1 && VECTOR(ai,4)==2, RESPS=10; % rL
elseif VECTOR(ai,10)==2 && VECTOR(ai,4)==1, RESPS=10; % lR
end
% ----------------------
VECTOR(ai,14)=GRATTON;
VECTOR(ai,15)=RESPS;
VECTOR(ai,16)=GRATTON.*RESPS;
clear GRATTON RESPS
end
end
UNIQUES=unique(VECTOR(:,16));
UNIQUES=UNIQUES(UNIQUES>0);
for ai=1:8
ERP(:,:,ai)=squeeze(mean(FILT.data(:,:,VECTOR(:,16)==UNIQUES(ai)),3));
end
% ---------------- single trial corr
for ai=1:8
for chani=1:60
rho=corr(squeeze(FILT.data(chani,:,VECTOR(:,16)==UNIQUES(ai)))', VECTOR(VECTOR(:,16)==UNIQUES(ai),5) ,'type','Spearman','rows','complete');
ERP_Corr(chani,:,ai)=rho;
end
end
% ---------------- limit based on lowest epoch count
for ai=1:8
TEMP_by_set{ai}=FILT.data(:,:,VECTOR(:,16)==UNIQUES(ai));
TEMP_by_set_SIZE(ai)=size(TEMP_by_set{ai},3);
end
TEMP_minsize=min(TEMP_by_set_SIZE);
% ----
for ai=1:8
TEMP_TRIALS=1:TEMP_by_set_SIZE(ai);
TEMP_TRIALS=shuffle(TEMP_TRIALS);
ERP_minsize(:,:,ai)=squeeze(mean( TEMP_by_set{ai}(:,:,TEMP_TRIALS(1:TEMP_minsize)) ,3));
clear TEMP_TRIALS
end
clear TEMP_by_set TEMP_by_set_SIZE TEMP_minsize TEMP_by_set_SIZE;
% ------------------ Now for response locked
for respi=1:dims(3)
RT=VECTOR(respi,5);
if isnan(RT)
response=zeros(dims(1),dims(2)) ; % repmat(NaN,dims(1),dims(2));
else
FILT_response=cat(2,FILT.data(:, floor(RT/2):end ,respi), zeros(dims(1),floor(RT/2)-1) );
response=cat(2,FILT.data(:, floor(RT/2):end ,respi), zeros(dims(1),floor(RT/2)-1) );
end
FILT.RESP(:,:,respi)=response;
EEG.RESP(:,:,respi)=response; clear FILT_response response;
end
% Stuff
L_C3=26;
R_C4=30;
for ai=1:length(VECTOR)
if ~isnan(VECTOR(ai,4))
% ---------------------- [Right=1, Left=2]
if VECTOR(ai,4)==1, active_site=L_C3; inactive_site=R_C4; % Right response, left cortex active
elseif VECTOR(ai,4)==2, active_site=R_C4; inactive_site=L_C3; % Left response, right cortex active
end
% ----------------------
FILT.RESP_ActInact(:,ai)=FILT.RESP(active_site,:,ai)-FILT.RESP(inactive_site,:,ai);
FILT.STIM_ActInact(:,ai)=FILT.data(active_site,:,ai)-FILT.data(inactive_site,:,ai);
else
FILT.RESP_ActInact(:,ai)=repmat(NaN,1,dims(2));
FILT.STIM_ActInact(:,ai)=repmat(NaN,1,dims(2));
end
end
% ERP-i-fy
for ai=1:8
ERP_RESP(:,ai)=squeeze(mean(FILT.RESP_ActInact(:,VECTOR(:,16)==UNIQUES(ai)),2));
ERP_RESP_All(:,:,ai)=squeeze(mean(FILT.RESP(:,:,VECTOR(:,16)==UNIQUES(ai)),3));
ERP_LRP_to_STIM(:,ai)=squeeze(mean(FILT.STIM_ActInact(:,VECTOR(:,16)==UNIQUES(ai)),2));
end
% ---------------- single trial corr
for ai=1:8
rho=corr(squeeze(FILT.RESP_ActInact(:,VECTOR(:,16)==UNIQUES(ai)))', VECTOR(VECTOR(:,16)==UNIQUES(ai),5) ,'type','Spearman','rows','complete');
ERP_RESP_Corr(:,ai)=rho;
end
% ---------------- limit based on lowest epoch count
for ai=1:8
TEMP_by_set{ai}=FILT.RESP_ActInact(:,VECTOR(:,16)==UNIQUES(ai));
TEMP_by_set_SIZE(ai)=size(TEMP_by_set{ai},2);
end
TEMP_minsize=min(TEMP_by_set_SIZE);
% ----
for ai=1:8
TEMP_TRIALS=1:TEMP_by_set_SIZE(ai);
TEMP_TRIALS=shuffle(TEMP_TRIALS);
ERP_LRP_minsize(:,ai)=squeeze(mean( TEMP_by_set{ai}(:,TEMP_TRIALS(1:TEMP_minsize)) ,2));
clear TEMP_TRIALS
end
clear TEMP_by_set TEMP_by_set_SIZE TEMP_minsize TEMP_by_set_SIZE;
% ^^^^^^^^^^^^^^^^ TF
% Setup Wavelet Params
num_freqs=50;
frex=logspace(.01,1.7,num_freqs);
s=logspace(log10(3),log10(10),num_freqs)./(2*pi*frex);
t=-2:1/EEG.srate:2;
% Definte Convolution Parameters
dims = size(EEG.data);
n_wavelet = length(t);
n_data = dims(2)*dims(3);
n_convolution = n_wavelet+n_data-1;
n_conv_pow2 = pow2(nextpow2(n_convolution));
half_of_wavelet_size = (n_wavelet-1)/2;
% same times, new baseline - also resp is -1000 to 500
tx=-2000:2:1998;
b1=find(tx==-300); b2=find(tx==-200);
t1=find(tx==-500); t2=find(tx==1000);
rt1=find(tx==-500); rt2=find(tx==1000); % OK, made this like cue to get lotsa post-response activity
% get FFT of data
TF_chani=19;
EEG_fft = fft(reshape(EEG.data(TF_chani,:,:),1,n_data),n_conv_pow2);
RESP_fft = fft(reshape(EEG.RESP(TF_chani,:,:),1,n_data),n_conv_pow2);
for fi=1:num_freqs
wavelet = fft( exp(2*1i*pi*frex(fi).*t) .* exp(-t.^2./(2*(s(fi)^2))) , n_conv_pow2 ); % sqrt(1/(s(fi)*sqrt(pi))) *
% convolution
EEG_conv = ifft(wavelet.*EEG_fft);
EEG_conv = EEG_conv(1:n_convolution);
EEG_conv = EEG_conv(half_of_wavelet_size+1:end-half_of_wavelet_size);
EEG_conv = reshape(EEG_conv,dims(2),dims(3));
% convolution
RESP_conv = ifft(wavelet.*RESP_fft);
RESP_conv = RESP_conv(1:n_convolution);
RESP_conv = RESP_conv(half_of_wavelet_size+1:end-half_of_wavelet_size);
RESP_conv = reshape(RESP_conv,dims(2),dims(3));
% Get baseline
BASE = mean(mean(abs(EEG_conv(b1:b2,:)).^2));
for ai=1:8
% Get power by condi
temp_POWER1 = mean(abs(EEG_conv(t1:t2,VECTOR(:,16)==UNIQUES(ai))).^2,2);
temp_POWER2 = mean(abs(RESP_conv(rt1:rt2,VECTOR(:,16)==UNIQUES(ai))).^2,2);
% dB correct power by base (different time windows)
POWER{1}(fi,:,ai) = 10*( log10(temp_POWER1) - log10(repmat(BASE,size(tx2disp,2),1)) ) ;
POWER{2}(fi,:,ai) = 10*( log10(temp_POWER2) - log10(repmat(BASE,size(tx2disp,2),1)) ) ;
% Get ITPC by condi (different time windows)
ITPC{1}(fi,:,ai) = abs(mean(exp(1i*( angle(EEG_conv(t1:t2,VECTOR(:,16)==UNIQUES(ai))) )),2));
ITPC{2}(fi,:,ai) = abs(mean(exp(1i*( angle(RESP_conv(t1:t2,VECTOR(:,16)==UNIQUES(ai))) )),2));
clear temp_POWER1 temp_POWER2;
end
clear wavelet EEG_conv RESP_conv BASE;
end
% ^^^^^^^^^^^^^^^^
save([savedir,num2str(subno),'_ERPs_2018_Revision.mat'],'SUBJINFO','SUBJINFO_HDR','ERP','ERP_RESP','ERP_RESP_All','VECTOR','POWER','ITPC',...
'ERP_LRP_to_STIM','ERP_minsize','ERP_Corr','ERP_RESP_Corr','ERP_LRP_minsize');
end
end
clearvars -except FILZ xls_data xls_hdr si datalocation savedir;
end
%%
|