File size: 13,808 Bytes
b0cc889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
%% Step 2 - load pre-proc'd flankers data
clear all; clc
addpath('Z:\EXPERIMENTS\Flankers t2t\');

datalocation='Y:\EEG_Data\Flankers OCDII\Processed Data\';   % Data are here

savedir='Y:\EEG_Data\Flankers OCDII\ERPs\';  % Save processed data here

cd(datalocation);



% Load up

[xls_data,xls_hdr]=xlsread('Z:\EXPERIMENTS\Flankers t2t\info.xlsx');



% Data are 60 chans * 2000 time * N epochs  |  Ref'd to linked mastoids
FILZ=dir('*_FLANKERS.mat');

for si=length(FILZ):-1:1
    
    subname=FILZ(si).name;
    subno=str2num(subname(1:3)); clc
    
    % Only run the latter on subjs pre-selected to be MUY BUENO (N=46)
    if ~isempty(find(xls_data(:,1)==subno))
        % Only run if not already done
        if 1 % ~(exist([savedir,num2str(subno),'_ERPs.mat'])==2)
            % Display
            disp(['DOING:    ',num2str(subno)]);
            
            % Get Subj Info
            tempdat=xls_data(find(xls_data(:,1)==subno),:);
            tempdat_hdr=xls_hdr(find(xls_data(:,1)==subno)+1,:);  % +1 b/c of header row
            SUBJINFO(1)=subno;
            SUBJINFO(2)=tempdat(1);
            SUBJINFO(3)=tempdat(4);
            SUBJINFO(4)=tempdat(6);
            SUBJINFO(5)=tempdat(7);
            SUBJINFO(6)=tempdat(9);
            SUBJINFO_HDR={'EEG_ID','INFO_ID','Error%','Sex','Age','OCI_Score'};
            %
            if ~isnan(tempdat(5))
                bad_ICAs_To_Remove=tempdat(5);
            elseif isnan(tempdat(5))
                bad_ICAs_To_Remove=str2num(cell2mat(tempdat_hdr(5)));
            end
            clear tempdat tempdat_hdr;
            
            % Load EEG
            load([datalocation,subname]);
            
            % Remove the bad ICAs:
            EEG = pop_subcomp( EEG, bad_ICAs_To_Remove, 0);
            
            
            % Get the good info out of the epochs
            VECTOR(1:size(EEG.epoch,2),1:13)=NaN;
            for ai=1:size(EEG.epoch,2)
                VECTOR(ai,1)=EEG.epoch(ai).TRIALNUM;
                VECTOR(ai,2)=EEG.epoch(ai).STIM;
                VECTOR(ai,3)=EEG.epoch(ai).CONGRU;
                VECTOR(ai,4)=EEG.epoch(ai).RightLeft;
                VECTOR(ai,5)=EEG.epoch(ai).RT;
                VECTOR(ai,6)=EEG.epoch(ai).ACC;
                % ^^^^^^^^^^^^^^^^^^ OOPS
                if ~isempty(EEG.epoch(ai).PREVTRIAL)
                    % ^^^^^^^^^^^^^^^^^^
                    VECTOR(ai,7)=EEG.epoch(ai).PREVTRIAL.TRIALNUM;
                    VECTOR(ai,8)=EEG.epoch(ai).PREVTRIAL.STIM;
                    VECTOR(ai,9)=EEG.epoch(ai).PREVTRIAL.CONGRU;
                    VECTOR(ai,10)=EEG.epoch(ai).PREVTRIAL.RightLeft;
                    VECTOR(ai,11)=EEG.epoch(ai).PREVTRIAL.RT;
                    VECTOR(ai,12)=EEG.epoch(ai).PREVTRIAL.ACC;
                    VECTOR(ai,13)=EEG.epoch(ai).PREVTRIAL.BlockStart;
                end
            end
            
            
            % Let's just do this for ERPs  - keep EEG.data structure unfiltered
            dims=size(EEG.data);
            FILT.data=eegfilt(EEG.data,500,[],20);
            FILT.data=reshape(FILT.data,dims(1),dims(2),dims(3));
            
            % Set Params
            tx=-2000:2:1998;
            b1=find(tx==-200);  b2=find(tx==0);
            t1=find(tx==-500);  t2=find(tx==1000);
            N2topo1=find(tx==200); N2topo2=find(tx==350);  N2toporangetot=200:2:350;
            P3topo1=find(tx==400); P3topo2=find(tx==600);  P3toporangetot=400:2:600;
            tx2disp=-500:2:1000;
            
            % Basecor your ERPs here so they are pretty.
            BASE=squeeze(  mean(FILT.data(:,b1:b2,:),2)  );
            for ai=1:dims(1)
                FILT.data(ai,:,:)=squeeze(FILT.data(ai,:,:))-repmat( BASE(ai,:),dims(2),1 );
            end
            
            % $$$$$$$$$$$$$$$$$$$ Parse condis and save ERPs $$$$$$$$$$$$$$$$$$$ %
            
            % If blockstart, then NaN the row
            VECTOR(VECTOR(:,13)==1,[3,4,9,10])=NaN;
            % If error, then NaN the row
            VECTOR(VECTOR(:,6)==0,[3,4,9,10])=NaN;
            % If post-error, then NaN the row
            temp=VECTOR(:,6)==0;
            VECTOR(logical([0;temp(1:end-1)]),[3,4,9,10])=NaN;    clear temp;
            % If RT<200 or NaN, then NaN the row
            VECTOR(VECTOR(:,5)<200,[3,4,9,10])=NaN;
            VECTOR(isnan(VECTOR(:,5)),[3,4,9,10])=NaN;
            % If any >2, all are NaN
            temp=sum((VECTOR(:,[3,4,9,10])>2)')';
            VECTOR(temp>0,[3,4,9,10])=NaN;
            % If any are NaN, all are NaN
            temp=sum(isnan(VECTOR(:,[3,4,9,10]))')';
            VECTOR(temp>0,[3,4,9,10])=NaN;
            
            for ai=1:length(VECTOR)
                if ~isnan(VECTOR(ai,3))
                    % ---------------------- congruent (1) or conflict (0)
                    if      VECTOR(ai,9)==1 && VECTOR(ai,3)==1, GRATTON=1;  %  cC
                    elseif  VECTOR(ai,9)==1 && VECTOR(ai,3)==0, GRATTON=2;  %  cI
                    elseif  VECTOR(ai,9)==0 && VECTOR(ai,3)==1, GRATTON=3;  %  iC
                    elseif  VECTOR(ai,9)==0 && VECTOR(ai,3)==0, GRATTON=4;  %  iI
                    end
                    % ---------------------- [Right=1, Left=2]
                    if      VECTOR(ai,10)==1 && VECTOR(ai,4)==1, RESPS=1; %  rR
                    elseif  VECTOR(ai,10)==2 && VECTOR(ai,4)==2, RESPS=1; %  lL
                    elseif  VECTOR(ai,10)==1 && VECTOR(ai,4)==2, RESPS=10; %  rL
                    elseif  VECTOR(ai,10)==2 && VECTOR(ai,4)==1, RESPS=10; %  lR
                    end
                    % ----------------------
                    VECTOR(ai,14)=GRATTON;
                    VECTOR(ai,15)=RESPS;
                    VECTOR(ai,16)=GRATTON.*RESPS;
                    clear GRATTON RESPS
                end
            end
            
            UNIQUES=unique(VECTOR(:,16));
            UNIQUES=UNIQUES(UNIQUES>0);
            for ai=1:8
                ERP(:,:,ai)=squeeze(mean(FILT.data(:,:,VECTOR(:,16)==UNIQUES(ai)),3));
            end
            % ---------------- single trial corr
            for ai=1:8
                for chani=1:60
                    rho=corr(squeeze(FILT.data(chani,:,VECTOR(:,16)==UNIQUES(ai)))', VECTOR(VECTOR(:,16)==UNIQUES(ai),5)  ,'type','Spearman','rows','complete');

                    ERP_Corr(chani,:,ai)=rho;

                end

            end

            % ----------------  limit based on lowest epoch count

            for ai=1:8

                TEMP_by_set{ai}=FILT.data(:,:,VECTOR(:,16)==UNIQUES(ai));

                TEMP_by_set_SIZE(ai)=size(TEMP_by_set{ai},3);

            end

            TEMP_minsize=min(TEMP_by_set_SIZE);

            % ----

            for ai=1:8

                TEMP_TRIALS=1:TEMP_by_set_SIZE(ai);

                TEMP_TRIALS=shuffle(TEMP_TRIALS);

                ERP_minsize(:,:,ai)=squeeze(mean(  TEMP_by_set{ai}(:,:,TEMP_TRIALS(1:TEMP_minsize))  ,3));

                clear TEMP_TRIALS

            end

            clear TEMP_by_set TEMP_by_set_SIZE TEMP_minsize TEMP_by_set_SIZE;

            

            

            % ------------------ Now for response locked

            for respi=1:dims(3)

                RT=VECTOR(respi,5);

                if isnan(RT)

                    response=zeros(dims(1),dims(2)) ;            % repmat(NaN,dims(1),dims(2));

                else

                    FILT_response=cat(2,FILT.data(:, floor(RT/2):end ,respi), zeros(dims(1),floor(RT/2)-1)  );

                    response=cat(2,FILT.data(:, floor(RT/2):end ,respi), zeros(dims(1),floor(RT/2)-1)  );

                end

                FILT.RESP(:,:,respi)=response;

                EEG.RESP(:,:,respi)=response;  clear FILT_response response;

            end

            % Stuff

            L_C3=26;

            R_C4=30;

            for ai=1:length(VECTOR)

                if ~isnan(VECTOR(ai,4))

                    % ---------------------- [Right=1, Left=2]

                    if      VECTOR(ai,4)==1, active_site=L_C3;  inactive_site=R_C4;  % Right response, left cortex active

                    elseif  VECTOR(ai,4)==2, active_site=R_C4;  inactive_site=L_C3;  % Left response, right cortex active

                    end

                    % ----------------------

                    FILT.RESP_ActInact(:,ai)=FILT.RESP(active_site,:,ai)-FILT.RESP(inactive_site,:,ai);

                    FILT.STIM_ActInact(:,ai)=FILT.data(active_site,:,ai)-FILT.data(inactive_site,:,ai);

                else

                    FILT.RESP_ActInact(:,ai)=repmat(NaN,1,dims(2));

                    FILT.STIM_ActInact(:,ai)=repmat(NaN,1,dims(2));

                end

            end

            % ERP-i-fy

            for ai=1:8

                ERP_RESP(:,ai)=squeeze(mean(FILT.RESP_ActInact(:,VECTOR(:,16)==UNIQUES(ai)),2));

                ERP_RESP_All(:,:,ai)=squeeze(mean(FILT.RESP(:,:,VECTOR(:,16)==UNIQUES(ai)),3));

                ERP_LRP_to_STIM(:,ai)=squeeze(mean(FILT.STIM_ActInact(:,VECTOR(:,16)==UNIQUES(ai)),2));

            end

             % ---------------- single trial corr

             for ai=1:8

                 rho=corr(squeeze(FILT.RESP_ActInact(:,VECTOR(:,16)==UNIQUES(ai)))', VECTOR(VECTOR(:,16)==UNIQUES(ai),5)  ,'type','Spearman','rows','complete');
                 ERP_RESP_Corr(:,ai)=rho;
             end
               % ----------------  limit based on lowest epoch count
            for ai=1:8
                TEMP_by_set{ai}=FILT.RESP_ActInact(:,VECTOR(:,16)==UNIQUES(ai));
                TEMP_by_set_SIZE(ai)=size(TEMP_by_set{ai},2);
            end
            TEMP_minsize=min(TEMP_by_set_SIZE);
            % ----
            for ai=1:8
                TEMP_TRIALS=1:TEMP_by_set_SIZE(ai);
                TEMP_TRIALS=shuffle(TEMP_TRIALS);
                ERP_LRP_minsize(:,ai)=squeeze(mean(  TEMP_by_set{ai}(:,TEMP_TRIALS(1:TEMP_minsize))  ,2));
                clear TEMP_TRIALS
            end
            clear TEMP_by_set TEMP_by_set_SIZE TEMP_minsize TEMP_by_set_SIZE;
            
            

            
            % ^^^^^^^^^^^^^^^^ TF
            % Setup Wavelet Params
            num_freqs=50;
            frex=logspace(.01,1.7,num_freqs);
            s=logspace(log10(3),log10(10),num_freqs)./(2*pi*frex);
            t=-2:1/EEG.srate:2;
            
            % Definte Convolution Parameters
            dims = size(EEG.data);
            n_wavelet = length(t);
            n_data = dims(2)*dims(3);
            n_convolution = n_wavelet+n_data-1;
            n_conv_pow2 = pow2(nextpow2(n_convolution));
            half_of_wavelet_size = (n_wavelet-1)/2;
            
            % same times, new baseline - also resp is -1000 to 500
            tx=-2000:2:1998;
            b1=find(tx==-300);  b2=find(tx==-200);
            t1=find(tx==-500);  t2=find(tx==1000);
            rt1=find(tx==-500); rt2=find(tx==1000);    % OK, made this like cue to get lotsa post-response activity
            
            % get FFT of data
            TF_chani=19;
            EEG_fft = fft(reshape(EEG.data(TF_chani,:,:),1,n_data),n_conv_pow2);
            RESP_fft = fft(reshape(EEG.RESP(TF_chani,:,:),1,n_data),n_conv_pow2);
            
            for fi=1:num_freqs
                
                wavelet = fft( exp(2*1i*pi*frex(fi).*t) .* exp(-t.^2./(2*(s(fi)^2))) , n_conv_pow2 );  % sqrt(1/(s(fi)*sqrt(pi))) *
                
                % convolution
                EEG_conv = ifft(wavelet.*EEG_fft);
                EEG_conv = EEG_conv(1:n_convolution);
                EEG_conv = EEG_conv(half_of_wavelet_size+1:end-half_of_wavelet_size);
                EEG_conv = reshape(EEG_conv,dims(2),dims(3));
                
                % convolution
                RESP_conv = ifft(wavelet.*RESP_fft);
                RESP_conv = RESP_conv(1:n_convolution);
                RESP_conv = RESP_conv(half_of_wavelet_size+1:end-half_of_wavelet_size);
                RESP_conv = reshape(RESP_conv,dims(2),dims(3));
                
                % Get baseline 
                BASE = mean(mean(abs(EEG_conv(b1:b2,:)).^2));
                
                for ai=1:8
                    % Get power by condi
                    temp_POWER1 = mean(abs(EEG_conv(t1:t2,VECTOR(:,16)==UNIQUES(ai))).^2,2);
                    temp_POWER2 = mean(abs(RESP_conv(rt1:rt2,VECTOR(:,16)==UNIQUES(ai))).^2,2);

                    % dB correct power by base (different time windows)
                    POWER{1}(fi,:,ai) = 10*(  log10(temp_POWER1) - log10(repmat(BASE,size(tx2disp,2),1)) ) ;
                    POWER{2}(fi,:,ai) = 10*(  log10(temp_POWER2) - log10(repmat(BASE,size(tx2disp,2),1)) ) ;
                    
                    % Get ITPC by condi (different time windows)
                    ITPC{1}(fi,:,ai) = abs(mean(exp(1i*(  angle(EEG_conv(t1:t2,VECTOR(:,16)==UNIQUES(ai)))  )),2));
                    ITPC{2}(fi,:,ai) = abs(mean(exp(1i*(  angle(RESP_conv(t1:t2,VECTOR(:,16)==UNIQUES(ai)))  )),2));
                    
                    clear temp_POWER1 temp_POWER2;
                end
                clear wavelet EEG_conv RESP_conv BASE;
            end
            % ^^^^^^^^^^^^^^^^
           

            save([savedir,num2str(subno),'_ERPs_2018_Revision.mat'],'SUBJINFO','SUBJINFO_HDR','ERP','ERP_RESP','ERP_RESP_All','VECTOR','POWER','ITPC',...
                   'ERP_LRP_to_STIM','ERP_minsize','ERP_Corr','ERP_RESP_Corr','ERP_LRP_minsize');
               
        end
        
    end
    
    clearvars -except FILZ xls_data xls_hdr si datalocation savedir;
end


%%