Gruendler2009 / scripts /APPLE_OCDII.m
jalauer's picture
Add files using upload-large-folder tool
b0cc889 verified
function [EEG,bad_chans,bad_epochs,bad_ICAs]=APPLE_OCDII(EEG,eeg_chans,ref_chan,Do_ICA,subno,VEOG,appledir)
% Algorithmic Pre-Processing Line for EEG
% Intellectual Property of James F Cavanagh jcavanagh@unm.edu 2013
% Use eeglab12_0_2_1b and in the plugins folder include the following:
% FASTER 1.2.3: http://sourceforge.net/projects/faster/
% ADJUST: http://www.unicog.org/pm/pmwiki.php/MEG/RemovingArtifactsWithADJUST
% Gratton Eyeblink Correction: can't find the website, but it doesn't work well and I'm going to remove it anyways. Just have 1 for Do_ICA always.
% ===================
% MANDATORY INPUT
% ===================
% EEG - The eponymous EEGLab array
% eeg_chans - vector of EEG channels (exclude VEOG, HEOG, anything else here)
% ref_chan - Call_APPLE should have re-ref'd the data to Fz or FCz
% Do_ICA - Do ICAs or not? If no, it will run Gratton regression if there is VEOG
%
% ====================
% OPTIONAL PARAMETERS
% ====================
% SubjID - Subject ID for saving the output jpeg. Optional - will be set to 0 if empty
% VEOG - The vector of VEOG stripped from the EEG.data structure for
% use in ID'ing ICA blinks.
%
% ==============
% OUTPUT
% ==============
% EEG - interpolated with bad epochs rejected. If Gratton, eyeblinks removed.
% bad_chans
% bad_epochs
% bad_ICAs
% Start clock
tic
% Get stuff
SubjID=0;
if nargin >4
if ~isempty(subno), SubjID=subno; end
end
if nargin>5, hasVEOG=1; else hasVEOG=0; end
% Get dimensions of EEG data matrix
dims=size(EEG.data);
% Get Vertex Site
for ai=1:dims(1), Z(ai)=EEG.chanlocs(ai).Z; end
Vertex=find(Z==max(Z)); clear Z;
% Get ERP % Topo of these data prior to fixen's
TEMPPRE = pop_reref( EEG, []);
PreFixERP=eegfilt(squeeze(mean(TEMPPRE.data(Vertex,:,:),3)),TEMPPRE.srate,[],20);
PreFixERP=PreFixERP-repmat(mean(PreFixERP),1,length(PreFixERP));
% Get times irrespective of sample rate
T1=find( abs(TEMPPRE.times-300) == min(abs(TEMPPRE.times-300)) ) ;
T2=find( abs(TEMPPRE.times-400) == min(abs(TEMPPRE.times-400)) ) ;
PreFixTopo=squeeze(mean(mean(TEMPPRE.data(:,T1:T2,:),2),3)); % Topo w/ blinks
clear TEMPPRE;
%% ID bad channels
% EEGLab Function
tempeeg=EEG; % save the real data as an archive
[EEG, indelec, measure] = pop_rejchan( EEG, 'elec', eeg_chans); % process on the 'EEG' set
clear EEG; EEG=tempeeg; clear tempeeg; % save what was done to the 'EEG' set, then erase it and replace with archive
% FASTER
chan = channel_properties(EEG, eeg_chans, ref_chan);
chan_exceeded_threshold = min_z_JFC(chan); % Cols are: 1) weighted correlation, weighted variance, Hurst
FASTER_bad_chans = find(logical(chan_exceeded_threshold(:,2)+chan_exceeded_threshold(:,3)));
% Combine unique elements
TOTAL_bad_chans=unique([FASTER_bad_chans(:);indelec(:)]);
if subno==921 , TOTAL_bad_chans=unique([FASTER_bad_chans(:);indelec(:),46]); end
if subno==932 , TOTAL_bad_chans=unique([FASTER_bad_chans(:);indelec(:),9]); end
if subno==946 , TOTAL_bad_chans=unique([FASTER_bad_chans(:);indelec(:),26]); end
% INTERPOLATE
if ~isempty(TOTAL_bad_chans)
EEG.data=double(EEG.data);
EEG = pop_interp(EEG,TOTAL_bad_chans,'spherical');
end
bad_chans{1}=FASTER_bad_chans;
bad_chans{2}=indelec;
bad_chans{3}=TOTAL_bad_chans;
% % % % %% NOW re-ref to average - after interpolation and before rejection (pop_autorej requires it)
% % % % EEG = pop_reref( EEG, []);
%% ID bad epochs
% EEGLab Function
tempeeg=EEG; % same as above - this takes a while though
[EEG, rmepochs] = pop_autorej(EEG,'nogui','on');
% - here
clear EEG; EEG=tempeeg; clear tempeeg;
autorej_bad_epochs=zeros(EEG.trials,1); % vb Vectorize the output
autorej_bad_epochs(sort(rmepochs))=1;
% FASTER
epoch = epoch_properties(EEG,eeg_chans);
epoch_exceeded_threshold = min_z_JFC(epoch); % Cols are: 1) mean epoch deviation, 2) epoch variance, 3) max amplitude
FASTER_bad_epochs = logical(epoch_exceeded_threshold(:,1)+epoch_exceeded_threshold(:,2)+epoch_exceeded_threshold(:,3)); % ANYTHING marked as bad is bad
% Combine unique elements
TOTAL_bad_epochs=logical(FASTER_bad_epochs+autorej_bad_epochs);
% REJECT
binarized=zeros(1,EEG.trials);
binarized(FASTER_bad_epochs)=1; % Only the FASTER ones
EEG = pop_rejepoch(EEG,binarized,0);
goodepochs=logical(1-binarized);
EP2REJ=1;
bad_epochs{1}=FASTER_bad_epochs;
bad_epochs{2}=autorej_bad_epochs;
bad_epochs{3}=TOTAL_bad_epochs;
%% Deal with blinks
if Do_ICA==1
% Calculate kC^2 = # of data points needed
k=25; % Suggested by Onton et al.
C=dims(1)-length(TOTAL_bad_chans); % n good independent channels
sizeneeded=C^2*k;
epochsneeded=round(sizeneeded/EEG.srate); % # of epochs needed for a stable ICA solution
% ##### ##### ICA ##### #####
EEG = pop_runica(EEG,'icatype','runica'); % ,'chanind',eeg_chans(Chans4ICA)
% ADJUST
EEG.icaact = eeg_getica(EEG);
[art, horiz, vert, blink, disc, soglia_DV, diff_var, soglia_K,...
meanK, soglia_SED, SED, soglia_SAD, SAD, soglia_GDSF, GDSF, soglia_V, nuovaV]=ADJUST(EEG,'junkfile');
bad_ADJUST_ICAs=blink;
% Do VEOG correlation
if hasVEOG==1
for ai=1:size(EEG.icaact,1)
temp=squeeze(EEG.icaact(ai,:,:));
r=corrcoef(temp,VEOG(:,goodepochs));
VEOG_ICA_Corrs(ai)=abs(r(1,2)); clear temp;
end
bad_VEOG_ICAs=find(abs(zscore(VEOG_ICA_Corrs))>3);
if isempty(bad_VEOG_ICAs), bad_VEOG_ICAs=find(VEOG_ICA_Corrs==max(abs(VEOG_ICA_Corrs))); end % in case z-scores are too tightly distributed
else
bad_VEOG_ICAs=0;
end
% Bootstrap a blink template based on Gaussian distros around most frontopolar channels
% Get the most FrontoPolar Sites
for ai=1:dims(1), X(ai)=EEG.chanlocs(ai).X; end
FrontoPolars=find(X==max(X)); clear X;
% Make Gaussian Template - code taken from Mike X Cohen
for fpi=1:length(FrontoPolars)
e2use=FrontoPolars(fpi);
eucdist=zeros(1,size(EEG.icawinv,1)); topocorr=zeros(1,size(EEG.icawinv,1));
for chani=1:size(EEG.icawinv,1)
eucdist(chani)=sqrt( (EEG.chanlocs(chani).X-EEG.chanlocs(e2use).X)^2 + (EEG.chanlocs(chani).Y-EEG.chanlocs(e2use).Y)^2 + (EEG.chanlocs(chani).Z-EEG.chanlocs(e2use).Z)^2 );
end
s=30; template(fpi,:) = exp(- (eucdist.^2)/(2*s^2) );
end
template=mean(template,1);
% Get each ICA topo correlation with this topo template
for chani=1:size(EEG.icawinv,2)
topocorr(chani) = corr(EEG.icawinv(:,chani),template');
end
% Select the max correlations
bad_TEMPLATE_ICAs=find(abs(zscore(topocorr))>3);
if isempty(bad_TEMPLATE_ICAs), bad_TEMPLATE_ICAs=find(abs(topocorr)==max(abs(topocorr))); end % in case z-scores are too tightly distributed
% Aggregate all this
bad_ICAs{1}=bad_ADJUST_ICAs;
bad_ICAs{2}=bad_VEOG_ICAs;
bad_ICAs{3}=bad_TEMPLATE_ICAs;
bad_ICAs{4}=[sum(goodepochs),epochsneeded];
elseif Do_ICA~=1 && hasVEOG==1
% Do Gratton Method
EEG.data = gratton( EEG.data, VEOG(:,goodepochs), 200, 20 ); % Defaults for voltage (200 uV) and window (20 ms) | requires statistics toolbox
bad_ICAs='No ICAs, Ran Gratton';
end
%% Show Stats
elapsed=toc;
pBAD_CHANS=(length(bad_chans{3})./dims(1))*100;
pBAD_EPOCHS=(sum(bad_epochs{3})./dims(3))*100;
% Show ERP and Topo after rejecting blink ICA, but don't actually remove that from the real EEG data
tempeeg=EEG; % archive real set
EEG = pop_subcomp( EEG, bad_TEMPLATE_ICAs, 0); % remove TEMPLATE ICAs
PostFixERP=eegfilt(squeeze(mean(EEG.data(Vertex,:,:),3)),EEG.srate,[],20); % Get ERP
PostFixERP=PostFixERP-repmat(mean(PostFixERP),1,length(PostFixERP)); % Ersatz Baseline
PostFixTopo=squeeze(mean(mean(EEG.data(:,T1:T2,:),2),3)); % Topo w/o blinks
clear EEG; EEG=tempeeg; clear tempeeg; % recover archive set for output
figure;
subplot(2,3,1)
pie([dims(1)-length(bad_chans{3}),length(bad_chans{3})],[0 1],{['Good=',num2str(dims(1)-length(bad_chans{3}))],['Bad=',num2str(length(bad_chans{3}))]})
title(['Subj: ',num2str(SubjID), ' Bad Chans']);
subplot(2,3,2)
pie([dims(3)-sum(bad_epochs{EP2REJ}),sum(bad_epochs{EP2REJ})],[0 1],{['Good=',num2str(dims(3)-sum(bad_epochs{EP2REJ}))],['Bad=',num2str(sum(bad_epochs{EP2REJ}))]})
title(['Subj: ',num2str(SubjID), ' Bad Epochs']);
subplot(2,3,3)
if Do_ICA==1
text(.2, .90, ['Bad ADJUST ICAs: ',num2str(bad_ICAs{1})]);
text(.2, .75, ['Bad VEOGcorr ICAs: ',num2str(bad_ICAs{2})]);
text(.2, .60, ['Bad TEMPLATE ICAs: ',num2str(bad_ICAs{3})]);
text(.2, .45, ['Epochs Needed for ICA: ',num2str(bad_ICAs{4}(2))]);
text(.2, .30, ['Epochs in Dataset (good): ',num2str(bad_ICAs{4}(1))]);
text(.2, .15, ['Mins Elapsed: ',num2str(elapsed/60)]);
else
text(.2, .50, bad_ICAs);
text(.2, .05, ['Mins Elapsed: ',num2str(elapsed/60)]);
end
set(gca,'visible','off');
%
subplot(2,3,4)
hold on
topoplot(PreFixTopo,EEG.chanlocs);
title('Topo Before Fixes (300-400 ms)');
subplot(2,3,5)
hold on
topoplot(PostFixTopo,EEG.chanlocs);
title('Topo After Fixes (300-400 ms)');
subplot(2,3,6)
hold on
plot(EEG.times,PreFixERP,'r');
plot(EEG.times,PostFixERP,'b--');
legend({'Pre-Fixes','Post-Fixes'},'Location','SouthOutside');
title('ERP at Vertex (20 Hz Filter)');
% Save that shiznit
saveas(gcf, [appledir,num2str(SubjID),'_APPLE.png'],'png');
close all;
% Save a map of the original ICAs
pop_selectcomps(EEG, [1:30] );
saveas(gcf, [appledir,num2str(SubjID),'_APPLE_ICAs.png'],'png');
close all;
function [lengths] = min_z_JFC(list_properties,rejection_options)
if (~exist('rejection_options','var'))
rejection_options.measure=ones(1,size(list_properties,2));
rejection_options.z=3*ones(1,size(list_properties,2));
end
rejection_options.measure=logical(rejection_options.measure);
zs=list_properties-repmat(mean(list_properties,1),size(list_properties,1),1);
zs=zs./repmat(std(zs,[],1),size(list_properties,1),1);
zs(isnan(zs))=0;
%all_l = abs(zs) > repmat(rejection_options.z,size(list_properties,1),1);
%lengths = any(all_l(:,rejection_options.measure),2);
lengths = abs(zs) > repmat(rejection_options.z,size(list_properties,1),1);
%% Unused ideas
% for chani=1:length(TOTAL_bad_chans)
% goodicachans(chani,:)=eeg_chans~=TOTAL_bad_chans(chani);
% end
% Chans4ICA=(sum(goodicachans,1)./length(TOTAL_bad_chans))==1;