|
|
import argparse |
|
|
import datetime |
|
|
import importlib |
|
|
import json |
|
|
import os |
|
|
import sys |
|
|
import traceback |
|
|
import warnings |
|
|
from functools import partial |
|
|
|
|
|
import numpy as np |
|
|
import yaml |
|
|
|
|
|
warnings.simplefilter("ignore", category=DeprecationWarning) |
|
|
|
|
|
from typing import Union |
|
|
|
|
|
from lmms_eval.models import get_model |
|
|
|
|
|
from qmllm.quantization.quant_wrapper import qwrapper |
|
|
from qmllm.models import get_process_model |
|
|
from qmllm.calibration.pileval import get_calib_dataset |
|
|
from qmllm.calibration.coco_vl import get_multimodal_calib_dataset |
|
|
|
|
|
|
|
|
def parse_quant_args() -> argparse.Namespace: |
|
|
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) |
|
|
parser.add_argument("--config", default="", help="Path to a yaml file specifying all eval arguments, will ignore cli arguments if specified") |
|
|
parser.add_argument("--model", default="hf", help="Name of model e.g. `hf`") |
|
|
parser.add_argument( |
|
|
"--model_args", |
|
|
default="", |
|
|
help="String arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--batch_size", |
|
|
"-b", |
|
|
type=str, |
|
|
default=1, |
|
|
metavar="auto|auto:N|N", |
|
|
help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--device", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Device to use (e.g. cuda, cuda:0, cpu)", |
|
|
) |
|
|
|
|
|
parser.add_argument("--calib_data", default="pileval", choices=["pileval", "coco", None]) |
|
|
parser.add_argument("--n_samples", default=128, type=int) |
|
|
parser.add_argument("--data_path", default="", type=str) |
|
|
parser.add_argument("--image_folder", default="", type=str) |
|
|
parser.add_argument("--interleave_format", action="store_true") |
|
|
parser.add_argument("--few_shot_format", action="store_true") |
|
|
parser.add_argument("--text_data_path", default="", type=str) |
|
|
|
|
|
|
|
|
parser.add_argument("--method", default="awq", choices=["awq", "smoothquant", "mbq", "rtn", None]) |
|
|
parser.add_argument("--w_bit", default=8, type=int) |
|
|
parser.add_argument("--a_bit", default=16, type=int) |
|
|
parser.add_argument("--w_group", default=128, type=int) |
|
|
parser.add_argument("--alpha", default=0.5, type=int) |
|
|
parser.add_argument("--reweight", action="store_true") |
|
|
parser.add_argument("--distort", action="store_true") |
|
|
parser.add_argument("--loss_mode", default="mae", choices=["mae", "mse"]) |
|
|
parser.add_argument("--scale_path", default=None, type=str) |
|
|
parser.add_argument("--run_process", action="store_true") |
|
|
parser.add_argument("--pseudo_quant", action="store_true") |
|
|
args = parser.parse_args() |
|
|
return args |
|
|
|
|
|
|
|
|
def cli_quant(args: Union[argparse.Namespace, None] = None) -> None: |
|
|
if not args: |
|
|
args = parse_quant_args() |
|
|
|
|
|
args_list = [] |
|
|
if args.config: |
|
|
if not os.path.exists(args.config): |
|
|
raise ValueError(f"Config file does not exist: {args.config}") |
|
|
|
|
|
with open(args.config, "r") as file: |
|
|
config_args = yaml.safe_load(file) |
|
|
config_args = [config_args] if type(config_args) != list else config_args |
|
|
|
|
|
for config in config_args: |
|
|
args_copy = argparse.Namespace(**vars(args)) |
|
|
for key, value in config.items(): |
|
|
setattr(args_copy, key, value) |
|
|
args_list.append(args_copy) |
|
|
else: |
|
|
args_list.append(args) |
|
|
|
|
|
for args in args_list: |
|
|
cli_quant_single(args) |
|
|
|
|
|
|
|
|
def cli_quant_single(args: Union[argparse.Namespace, None] = None) -> None: |
|
|
|
|
|
if args.model_args is None: |
|
|
args.model_args = "" |
|
|
|
|
|
ModelClass = get_model(args.model) |
|
|
lm = ModelClass.create_from_arg_string( |
|
|
args.model_args, |
|
|
{ |
|
|
"batch_size": args.batch_size, |
|
|
"device": args.device, |
|
|
}, |
|
|
) |
|
|
|
|
|
|
|
|
Process_ModelClass = get_process_model(args.model) |
|
|
process_model = Process_ModelClass(lm._model, |
|
|
lm._tokenizer, |
|
|
lm.processor if hasattr(lm, 'processor') else None) |
|
|
|
|
|
|
|
|
prompt_inputs = None |
|
|
prompt_kwargs = None |
|
|
|
|
|
if args.calib_data == "pileval": |
|
|
prompt_inputs, prompt_kwargs = get_calib_dataset(data_path=args.data_path, tokenizer=lm._tokenizer, n_samples=args.n_samples) |
|
|
elif args.calib_data == "coco": |
|
|
prompt_inputs, prompt_kwargs = get_multimodal_calib_dataset(data_path=args.data_path, |
|
|
image_folder=args.image_folder, |
|
|
model=process_model, |
|
|
n_samples=args.n_samples, |
|
|
few_shot_format=args.few_shot_format, |
|
|
interleave_format=args.interleave_format, |
|
|
text_data_path=args.text_data_path) |
|
|
|
|
|
|
|
|
qwrapper(process_model, prompt_inputs, prompt_kwargs, args) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
cli_quant() |