mbqq / main_quant.py
kihgfft's picture
Upload folder using huggingface_hub
01c7a56 verified
import argparse
import datetime
import importlib
import json
import os
import sys
import traceback
import warnings
from functools import partial
import numpy as np
import yaml
warnings.simplefilter("ignore", category=DeprecationWarning)
from typing import Union
from lmms_eval.models import get_model
from qmllm.quantization.quant_wrapper import qwrapper
from qmllm.models import get_process_model
from qmllm.calibration.pileval import get_calib_dataset
from qmllm.calibration.coco_vl import get_multimodal_calib_dataset
def parse_quant_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--config", default="", help="Path to a yaml file specifying all eval arguments, will ignore cli arguments if specified")
parser.add_argument("--model", default="hf", help="Name of model e.g. `hf`")
parser.add_argument(
"--model_args",
default="",
help="String arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
)
parser.add_argument(
"--batch_size",
"-b",
type=str,
default=1,
metavar="auto|auto:N|N",
help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.",
)
parser.add_argument(
"--device",
type=str,
default=None,
help="Device to use (e.g. cuda, cuda:0, cpu)",
)
# calibration parameters
parser.add_argument("--calib_data", default="pileval", choices=["pileval", "coco", None])
parser.add_argument("--n_samples", default=128, type=int)
parser.add_argument("--data_path", default="", type=str)
parser.add_argument("--image_folder", default="", type=str)
parser.add_argument("--interleave_format", action="store_true")
parser.add_argument("--few_shot_format", action="store_true")
parser.add_argument("--text_data_path", default="", type=str)
# TODO: quantization parameters
parser.add_argument("--method", default="awq", choices=["awq", "smoothquant", "mbq", "rtn", None])
parser.add_argument("--w_bit", default=8, type=int)
parser.add_argument("--a_bit", default=16, type=int)
parser.add_argument("--w_group", default=128, type=int)
parser.add_argument("--alpha", default=0.5, type=int)
parser.add_argument("--reweight", action="store_true")
parser.add_argument("--distort", action="store_true")
parser.add_argument("--loss_mode", default="mae", choices=["mae", "mse"])
parser.add_argument("--scale_path", default=None, type=str)
parser.add_argument("--run_process", action="store_true")
parser.add_argument("--pseudo_quant", action="store_true")
args = parser.parse_args()
return args
def cli_quant(args: Union[argparse.Namespace, None] = None) -> None:
if not args:
args = parse_quant_args()
args_list = []
if args.config:
if not os.path.exists(args.config):
raise ValueError(f"Config file does not exist: {args.config}")
with open(args.config, "r") as file:
config_args = yaml.safe_load(file)
config_args = [config_args] if type(config_args) != list else config_args
# multiple configs, create args list first
for config in config_args:
args_copy = argparse.Namespace(**vars(args))
for key, value in config.items():
setattr(args_copy, key, value)
args_list.append(args_copy)
else:
args_list.append(args)
for args in args_list:
cli_quant_single(args)
def cli_quant_single(args: Union[argparse.Namespace, None] = None) -> None:
# here we load MLLMs outside of the evaluator.
if args.model_args is None:
args.model_args = ""
ModelClass = get_model(args.model)
lm = ModelClass.create_from_arg_string(
args.model_args,
{
"batch_size": args.batch_size,
"device": args.device,
},
)
# Preprocess the MLLM here, use "lm._model" to get the fp16 mllm.
Process_ModelClass = get_process_model(args.model)
process_model = Process_ModelClass(lm._model,
lm._tokenizer,
lm.processor if hasattr(lm, 'processor') else None)
# Generate the calibration tokens.
prompt_inputs = None
prompt_kwargs = None
if args.calib_data == "pileval":
prompt_inputs, prompt_kwargs = get_calib_dataset(data_path=args.data_path, tokenizer=lm._tokenizer, n_samples=args.n_samples)
elif args.calib_data == "coco":
prompt_inputs, prompt_kwargs = get_multimodal_calib_dataset(data_path=args.data_path,
image_folder=args.image_folder,
model=process_model,
n_samples=args.n_samples,
few_shot_format=args.few_shot_format,
interleave_format=args.interleave_format,
text_data_path=args.text_data_path)
# Wrapper the quantized model.
qwrapper(process_model, prompt_inputs, prompt_kwargs, args)
if __name__ == "__main__":
cli_quant()