import torch import torch.nn as nn from tqdm import tqdm from qmllm.quantization.quant_funcs import pseudo_quantize_tensor from qmllm.quantization.qlinear import WALinear from transformers.models.bloom.modeling_bloom import BloomForCausalLM from transformers.models.opt.modeling_opt import OPTForCausalLM def get_named_linears(module): return {name: m for name, m in module.named_modules() if isinstance(m, nn.Linear)} def get_blocks(model): if model.__class__.__name__ == "LlamaForCausalLM": layers = model.model.layers elif model.__class__.__name__ == "LlavaLlamaForCausalLM": # layers = [model.model.layers, model.model.vision_tower.vision_tower.vision_model.encoder.layers] layers = model.model.layers elif model.__class__.__name__ == "LlavaQwenForCausalLM": layers = model.model.layers elif model.__class__.__name__ == "InternLM2ForCausalLM": layers = model.model.layers elif model.__class__.__name__ == "InternVLChatModel": layers = model.language_model.model.layers elif model.__class__.__name__ == "Qwen2VLForConditionalGeneration": layers = model.model.layers elif model.__class__.__name__ == "LlavaLlamaModel": layers = model.llm.model.layers elif isinstance(model, OPTForCausalLM): layers = model.model.decoder.layers elif isinstance(model, BloomForCausalLM): layers = model.transformer.h elif "mpt" in str(model.__class__).lower(): layers = model.transformer.blocks elif "falcon" in str(model.__class__).lower(): layers = model.transformer.h elif "bigcode" in str(model.__class__).lower(): layers = model.transformer.h elif "neox" in str(model.__class__).lower(): layers = model.gpt_neox.layers else: raise NotImplementedError(type(model)) return layers @torch.no_grad() def pseudo_quantize_model_weight( model, w_bit, q_config, ): layers = get_blocks(model) for i in tqdm(range(len(layers)), desc="pseudo weight quantization..."): named_linears = get_named_linears(layers[i]) for n, m in named_linears.items(): # m.cuda() m.weight.data = pseudo_quantize_tensor( m.weight.data, n_bits=w_bit, **q_config ) # m.cpu() def get_module_by_name_suffix(model, module_name: str): for name, module in model.named_modules(): if name.endswith(module_name): return module @torch.no_grad() def pseudo_quantize_model_weight_act( model, w_bit, a_bit, ): layers = get_blocks(model) for i in tqdm(range(len(layers)), desc="pseudo weight activation quantization..."): named_linears = get_named_linears(layers[i]) for n, m in named_linears.items(): new_linear = WALinear.from_float(m, weight_quant="per_channel", act_quant="per_token", w_bit=w_bit, a_bit=a_bit) father_module = get_module_by_name_suffix(layers[i], '.'.join(n.split(".")[:-1])) setattr(father_module, n.split('.')[-1], new_linear) del new_linear, m torch.cuda.empty_cache()