|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Estimate training time and cost for TRL jobs. |
|
|
|
|
|
Usage: |
|
|
python estimate_cost.py --model <model> --dataset <dataset> --hardware <flavor> |
|
|
|
|
|
Example: |
|
|
python estimate_cost.py --model Qwen/Qwen2.5-0.5B --dataset trl-lib/Capybara --hardware a10g-large |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
|
|
|
|
|
|
HARDWARE_COSTS = { |
|
|
"t4-small": 0.75, |
|
|
"t4-medium": 1.50, |
|
|
"l4x1": 2.50, |
|
|
"a10g-small": 3.50, |
|
|
"a10g-large": 5.00, |
|
|
"a10g-largex2": 10.00, |
|
|
"a10g-largex4": 20.00, |
|
|
"a100-large": 10.00, |
|
|
} |
|
|
|
|
|
|
|
|
MODEL_SIZES = { |
|
|
"0.5B": 0.5, |
|
|
"1.5B": 1.5, |
|
|
"3B": 3, |
|
|
"7B": 7, |
|
|
"13B": 13, |
|
|
} |
|
|
|
|
|
def estimate_training_time(model_params, dataset_size, epochs, hardware): |
|
|
"""Estimate training time in hours.""" |
|
|
|
|
|
|
|
|
|
|
|
base_time_per_1k_examples = 0.1 |
|
|
|
|
|
|
|
|
time = base_time_per_1k_examples * model_params * (dataset_size / 1000) * epochs |
|
|
|
|
|
|
|
|
hardware_multipliers = { |
|
|
"t4-small": 2.0, |
|
|
"t4-medium": 1.5, |
|
|
"l4x1": 1.2, |
|
|
"a10g-small": 1.3, |
|
|
"a10g-large": 1.0, |
|
|
"a10g-largex2": 0.6, |
|
|
"a10g-largex4": 0.4, |
|
|
"a100-large": 0.7, |
|
|
} |
|
|
|
|
|
multiplier = hardware_multipliers.get(hardware, 1.0) |
|
|
time *= multiplier |
|
|
|
|
|
return time |
|
|
|
|
|
def parse_args(): |
|
|
parser = argparse.ArgumentParser(description="Estimate training cost for TRL jobs") |
|
|
parser.add_argument("--model", required=True, help="Model name or size (e.g., 'Qwen/Qwen2.5-0.5B' or '0.5B')") |
|
|
parser.add_argument("--dataset", required=True, help="Dataset name") |
|
|
parser.add_argument("--hardware", required=True, choices=HARDWARE_COSTS.keys(), help="Hardware flavor") |
|
|
parser.add_argument("--dataset-size", type=int, help="Override dataset size (number of examples)") |
|
|
parser.add_argument("--epochs", type=int, default=3, help="Number of training epochs") |
|
|
return parser.parse_args() |
|
|
|
|
|
def extract_model_size(model_name): |
|
|
"""Extract model size from name or return parsed value.""" |
|
|
for size_str, size_val in MODEL_SIZES.items(): |
|
|
if size_str in model_name: |
|
|
return size_val |
|
|
|
|
|
|
|
|
try: |
|
|
if "B" in model_name: |
|
|
return float(model_name.replace("B", "")) |
|
|
except: |
|
|
pass |
|
|
|
|
|
return 1.0 |
|
|
|
|
|
def main(): |
|
|
args = parse_args() |
|
|
|
|
|
|
|
|
model_params = extract_model_size(args.model) |
|
|
print(f"π Model: {args.model} (~{model_params}B parameters)") |
|
|
|
|
|
|
|
|
if args.dataset_size: |
|
|
dataset_size = args.dataset_size |
|
|
else: |
|
|
|
|
|
dataset_sizes = { |
|
|
"trl-lib/Capybara": 16000, |
|
|
"Anthropic/hh-rlhf": 160000, |
|
|
} |
|
|
dataset_size = dataset_sizes.get(args.dataset, 10000) |
|
|
|
|
|
print(f"π¦ Dataset: {args.dataset} (~{dataset_size} examples)") |
|
|
print(f"π Epochs: {args.epochs}") |
|
|
print(f"π» Hardware: {args.hardware}") |
|
|
print() |
|
|
|
|
|
|
|
|
estimated_hours = estimate_training_time(model_params, dataset_size, args.epochs, args.hardware) |
|
|
estimated_cost = estimated_hours * HARDWARE_COSTS[args.hardware] |
|
|
|
|
|
|
|
|
recommended_timeout_hours = estimated_hours * 1.3 |
|
|
|
|
|
print(f"β±οΈ Estimated training time: {estimated_hours:.1f} hours") |
|
|
print(f"π° Estimated cost: ${estimated_cost:.2f}") |
|
|
print(f"β° Recommended timeout: {recommended_timeout_hours:.1f}h (with 30% buffer)") |
|
|
print() |
|
|
|
|
|
|
|
|
if estimated_hours > 4: |
|
|
print("β οΈ Long training time - consider:") |
|
|
print(" - Using faster hardware") |
|
|
print(" - Reducing epochs") |
|
|
print(" - Using a smaller dataset subset for testing") |
|
|
|
|
|
if model_params >= 7 and args.hardware not in ["a10g-largex2", "a10g-largex4", "a100-large"]: |
|
|
print("β οΈ Large model - consider using:") |
|
|
print(" - Larger GPU (a100-large)") |
|
|
print(" - Multi-GPU setup (a10g-largex2 or a10g-largex4)") |
|
|
print(" - LoRA/PEFT for memory efficiency") |
|
|
|
|
|
print() |
|
|
print("π Example job configuration:") |
|
|
print(f""" |
|
|
hf_jobs("uv", {{ |
|
|
"script": "your_training_script.py", |
|
|
"flavor": "{args.hardware}", |
|
|
"timeout": "{recommended_timeout_hours:.0f}h", |
|
|
"secrets": {{"HF_TOKEN": "$HF_TOKEN"}} |
|
|
}}) |
|
|
""") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|