skills_go_to_github / trl /scripts /estimate_cost.py
evalstate
trl v1 (missing hf merges)
6527162
raw
history blame
4.82 kB
#!/usr/bin/env python3
# /// script
# dependencies = []
# ///
"""
Estimate training time and cost for TRL jobs.
Usage:
python estimate_cost.py --model <model> --dataset <dataset> --hardware <flavor>
Example:
python estimate_cost.py --model Qwen/Qwen2.5-0.5B --dataset trl-lib/Capybara --hardware a10g-large
"""
import argparse
# Hardware costs per hour (approximate)
HARDWARE_COSTS = {
"t4-small": 0.75,
"t4-medium": 1.50,
"l4x1": 2.50,
"a10g-small": 3.50,
"a10g-large": 5.00,
"a10g-largex2": 10.00,
"a10g-largex4": 20.00,
"a100-large": 10.00,
}
# Model sizes in billions of parameters
MODEL_SIZES = {
"0.5B": 0.5,
"1.5B": 1.5,
"3B": 3,
"7B": 7,
"13B": 13,
}
def estimate_training_time(model_params, dataset_size, epochs, hardware):
"""Estimate training time in hours."""
# Rough estimates based on empirical observations
# These are approximations and actual times will vary
base_time_per_1k_examples = 0.1 # hours for 1B model on a10g-large
# Adjust for model size
time = base_time_per_1k_examples * model_params * (dataset_size / 1000) * epochs
# Adjust for hardware (relative to a10g-large baseline)
hardware_multipliers = {
"t4-small": 2.0,
"t4-medium": 1.5,
"l4x1": 1.2,
"a10g-small": 1.3,
"a10g-large": 1.0,
"a10g-largex2": 0.6,
"a10g-largex4": 0.4,
"a100-large": 0.7,
}
multiplier = hardware_multipliers.get(hardware, 1.0)
time *= multiplier
return time
def parse_args():
parser = argparse.ArgumentParser(description="Estimate training cost for TRL jobs")
parser.add_argument("--model", required=True, help="Model name or size (e.g., 'Qwen/Qwen2.5-0.5B' or '0.5B')")
parser.add_argument("--dataset", required=True, help="Dataset name")
parser.add_argument("--hardware", required=True, choices=HARDWARE_COSTS.keys(), help="Hardware flavor")
parser.add_argument("--dataset-size", type=int, help="Override dataset size (number of examples)")
parser.add_argument("--epochs", type=int, default=3, help="Number of training epochs")
return parser.parse_args()
def extract_model_size(model_name):
"""Extract model size from name or return parsed value."""
for size_str, size_val in MODEL_SIZES.items():
if size_str in model_name:
return size_val
# Try to parse directly
try:
if "B" in model_name:
return float(model_name.replace("B", ""))
except:
pass
return 1.0 # Default to 1B if can't determine
def main():
args = parse_args()
# Extract model parameters
model_params = extract_model_size(args.model)
print(f"πŸ“Š Model: {args.model} (~{model_params}B parameters)")
# Estimate dataset size (would need to load to get real size)
if args.dataset_size:
dataset_size = args.dataset_size
else:
# Common dataset sizes (approximations)
dataset_sizes = {
"trl-lib/Capybara": 16000,
"Anthropic/hh-rlhf": 160000,
}
dataset_size = dataset_sizes.get(args.dataset, 10000)
print(f"πŸ“¦ Dataset: {args.dataset} (~{dataset_size} examples)")
print(f"πŸ”„ Epochs: {args.epochs}")
print(f"πŸ’» Hardware: {args.hardware}")
print()
# Estimate training time
estimated_hours = estimate_training_time(model_params, dataset_size, args.epochs, args.hardware)
estimated_cost = estimated_hours * HARDWARE_COSTS[args.hardware]
# Recommend timeout with buffer
recommended_timeout_hours = estimated_hours * 1.3 # 30% buffer
print(f"⏱️ Estimated training time: {estimated_hours:.1f} hours")
print(f"πŸ’° Estimated cost: ${estimated_cost:.2f}")
print(f"⏰ Recommended timeout: {recommended_timeout_hours:.1f}h (with 30% buffer)")
print()
# Warnings and recommendations
if estimated_hours > 4:
print("⚠️ Long training time - consider:")
print(" - Using faster hardware")
print(" - Reducing epochs")
print(" - Using a smaller dataset subset for testing")
if model_params >= 7 and args.hardware not in ["a10g-largex2", "a10g-largex4", "a100-large"]:
print("⚠️ Large model - consider using:")
print(" - Larger GPU (a100-large)")
print(" - Multi-GPU setup (a10g-largex2 or a10g-largex4)")
print(" - LoRA/PEFT for memory efficiency")
print()
print("πŸ“‹ Example job configuration:")
print(f"""
hf_jobs("uv", {{
"script": "your_training_script.py",
"flavor": "{args.hardware}",
"timeout": "{recommended_timeout_hours:.0f}h",
"secrets": {{"HF_TOKEN": "$HF_TOKEN"}}
}})
""")
if __name__ == "__main__":
main()