evalstate
trl v1 (missing hf merges)
6527162

Saving Training Results to Hugging Face Hub

⚠️ CRITICAL: Training environments are ephemeral. ALL results are lost when a job completes unless pushed to the Hub.

Why Hub Push is Required

When running on Hugging Face Jobs:

  • Environment is temporary
  • All files deleted on job completion
  • No local disk persistence
  • Cannot access results after job ends

Without Hub push, training is completely wasted.

Required Configuration

1. Training Configuration

In your SFTConfig or trainer config:

SFTConfig(
    push_to_hub=True,                    # Enable Hub push
    hub_model_id="username/model-name",   # Target repository
)

2. Job Configuration

When submitting the job:

hf_jobs("uv", {
    "script": "train.py",
    "secrets": {"HF_TOKEN": "$HF_TOKEN"}  # Provide authentication
})

The $HF_TOKEN placeholder is automatically replaced with your Hugging Face token.

Complete Example

# train.py
# /// script
# dependencies = ["trl"]
# ///

from trl import SFTTrainer, SFTConfig
from datasets import load_dataset

dataset = load_dataset("trl-lib/Capybara", split="train")

# Configure with Hub push
config = SFTConfig(
    output_dir="my-model",
    num_train_epochs=3,
    
    # ✅ CRITICAL: Hub push configuration
    push_to_hub=True,
    hub_model_id="myusername/my-trained-model",
    
    # Optional: Push strategy
    push_to_hub_model_id="myusername/my-trained-model",
    push_to_hub_organization=None,
    push_to_hub_token=None,  # Uses environment token
)

trainer = SFTTrainer(
    model="Qwen/Qwen2.5-0.5B",
    train_dataset=dataset,
    args=config,
)

trainer.train()

# ✅ Push final model
trainer.push_to_hub()

print("✅ Model saved to: https://huggingface.co/myusername/my-trained-model")

Submit with authentication:

hf_jobs("uv", {
    "script": "train.py",
    "flavor": "a10g-large",
    "timeout": "2h",
    "secrets": {"HF_TOKEN": "$HF_TOKEN"}  # ✅ Required!
})

What Gets Saved

When push_to_hub=True:

  1. Model weights - Final trained parameters
  2. Tokenizer - Associated tokenizer
  3. Configuration - Model config (config.json)
  4. Training arguments - Hyperparameters used
  5. Model card - Auto-generated documentation
  6. Checkpoints - If save_strategy="steps" enabled

Checkpoint Saving

Save intermediate checkpoints during training:

SFTConfig(
    output_dir="my-model",
    push_to_hub=True,
    hub_model_id="username/my-model",
    
    # Checkpoint configuration
    save_strategy="steps",
    save_steps=100,              # Save every 100 steps
    save_total_limit=3,          # Keep only last 3 checkpoints
)

Benefits:

  • Resume training if job fails
  • Compare checkpoint performance
  • Use intermediate models

Checkpoints are pushed to: username/my-model (same repo)

Authentication Methods

Method 1: Automatic Token (Recommended)

"secrets": {"HF_TOKEN": "$HF_TOKEN"}

Uses your logged-in Hugging Face token automatically.

Method 2: Explicit Token

"secrets": {"HF_TOKEN": "hf_abc123..."}

Provide token explicitly (not recommended for security).

Method 3: Environment Variable

"env": {"HF_TOKEN": "hf_abc123..."}

Pass as regular environment variable (less secure than secrets).

Always prefer Method 1 for security and convenience.

Verification Checklist

Before submitting any training job, verify:

  • push_to_hub=True in training config
  • hub_model_id is specified (format: username/model-name)
  • secrets={"HF_TOKEN": "$HF_TOKEN"} in job config
  • Repository name doesn't conflict with existing repos
  • You have write access to the target namespace

Repository Setup

Automatic Creation

If repository doesn't exist, it's created automatically when first pushing.

Manual Creation

Create repository before training:

from huggingface_hub import HfApi

api = HfApi()
api.create_repo(
    repo_id="username/model-name",
    repo_type="model",
    private=False,  # or True for private repo
)

Repository Naming

Valid names:

  • username/my-model
  • username/model-name
  • organization/model-name

Invalid names:

  • model-name (missing username)
  • username/model name (spaces not allowed)
  • username/MODEL (uppercase discouraged)

Troubleshooting

Error: 401 Unauthorized

Cause: HF_TOKEN not provided or invalid

Solutions:

  1. Verify secrets={"HF_TOKEN": "$HF_TOKEN"} in job config
  2. Check you're logged in: huggingface-cli whoami
  3. Re-login: huggingface-cli login

Error: 403 Forbidden

Cause: No write access to repository

Solutions:

  1. Check repository namespace matches your username
  2. Verify you're a member of organization (if using org namespace)
  3. Check repository isn't private (if accessing org repo)

Error: Repository not found

Cause: Repository doesn't exist and auto-creation failed

Solutions:

  1. Manually create repository first
  2. Check repository name format
  3. Verify namespace exists

Error: Push failed during training

Cause: Network issues or Hub unavailable

Solutions:

  1. Training continues but final push fails
  2. Checkpoints may be saved
  3. Re-run push manually after job completes

Issue: Model saved but not visible

Possible causes:

  1. Repository is private—check https://huggingface.co/username
  2. Wrong namespace—verify hub_model_id matches login
  3. Push still in progress—wait a few minutes

Manual Push After Training

If training completes but push fails, push manually:

from transformers import AutoModel, AutoTokenizer

# Load from local checkpoint
model = AutoModel.from_pretrained("./output_dir")
tokenizer = AutoTokenizer.from_pretrained("./output_dir")

# Push to Hub
model.push_to_hub("username/model-name", token="hf_abc123...")
tokenizer.push_to_hub("username/model-name", token="hf_abc123...")

Note: Only possible if job hasn't completed (files still exist).

Best Practices

  1. Always enable push_to_hub=True
  2. Use checkpoint saving for long training runs
  3. Verify Hub push in logs before job completes
  4. Set appropriate save_total_limit to avoid excessive checkpoints
  5. Use descriptive repo names (e.g., qwen-capybara-sft not model1)
  6. Add model card with training details
  7. Tag models with relevant tags (e.g., text-generation, fine-tuned)

Monitoring Push Progress

Check logs for push progress:

hf_jobs("logs", {"job_id": "your-job-id"})

Look for:

Pushing model to username/model-name...
Upload file pytorch_model.bin: 100%
✅ Model pushed successfully

Example: Full Production Setup

# production_train.py
# /// script
# dependencies = ["trl>=0.12.0", "peft>=0.7.0"]
# ///

from datasets import load_dataset
from peft import LoraConfig
from trl import SFTTrainer, SFTConfig
import os

# Verify token is available
assert "HF_TOKEN" in os.environ, "HF_TOKEN not found in environment!"

# Load dataset
dataset = load_dataset("trl-lib/Capybara", split="train")
print(f"✅ Dataset loaded: {len(dataset)} examples")

# Configure with comprehensive Hub settings
config = SFTConfig(
    output_dir="qwen-capybara-sft",
    
    # Hub configuration
    push_to_hub=True,
    hub_model_id="myusername/qwen-capybara-sft",
    hub_strategy="checkpoint",  # Push checkpoints
    
    # Checkpoint configuration
    save_strategy="steps",
    save_steps=100,
    save_total_limit=3,
    
    # Training settings
    num_train_epochs=3,
    per_device_train_batch_size=4,
    
    # Logging
    logging_steps=10,
    logging_first_step=True,
)

# Train with LoRA
trainer = SFTTrainer(
    model="Qwen/Qwen2.5-0.5B",
    train_dataset=dataset,
    args=config,
    peft_config=LoraConfig(r=16, lora_alpha=32),
)

print("🚀 Starting training...")
trainer.train()

print("💾 Pushing final model to Hub...")
trainer.push_to_hub()

print("✅ Training complete!")
print(f"Model available at: https://huggingface.co/myusername/qwen-capybara-sft")

Submit:

hf_jobs("uv", {
    "script": "production_train.py",
    "flavor": "a10g-large",
    "timeout": "6h",
    "secrets": {"HF_TOKEN": "$HF_TOKEN"}
})

Key Takeaway

Without push_to_hub=True and secrets={"HF_TOKEN": "$HF_TOKEN"}, all training results are permanently lost.

Always verify both are configured before submitting any training job.