TRL Training Methods Overview
TRL (Transformer Reinforcement Learning) provides multiple training methods for fine-tuning and aligning language models. This reference provides a brief overview of each method.
Supervised Fine-Tuning (SFT)
What it is: Standard instruction tuning with supervised learning on demonstration data.
When to use:
- Initial fine-tuning of base models on task-specific data
- Teaching new capabilities or domains
- Most common starting point for fine-tuning
Dataset format: Conversational format with "messages" field, OR text field, OR prompt/completion pairs
Example:
from trl import SFTTrainer, SFTConfig
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
args=SFTConfig(
output_dir="my-model",
push_to_hub=True,
hub_model_id="username/my-model",
eval_strategy="no", # Disable eval for simple example
)
)
trainer.train()
Note: For production training with evaluation monitoring, see scripts/train_sft_example.py
Documentation: hf_doc_fetch("https://huggingface.co/docs/trl/sft_trainer")
Direct Preference Optimization (DPO)
What it is: Alignment method that trains directly on preference pairs (chosen vs rejected responses) without requiring a reward model.
When to use:
- Aligning models to human preferences
- Improving response quality after SFT
- Have paired preference data (chosen/rejected responses)
Dataset format: Preference pairs with "chosen" and "rejected" fields
Example:
from trl import DPOTrainer, DPOConfig
trainer = DPOTrainer(
model="Qwen/Qwen2.5-0.5B-Instruct", # Use instruct model
train_dataset=dataset,
args=DPOConfig(
output_dir="dpo-model",
beta=0.1, # KL penalty coefficient
eval_strategy="no", # Disable eval for simple example
)
)
trainer.train()
Note: For production training with evaluation monitoring, see scripts/train_dpo_example.py
Documentation: hf_doc_fetch("https://huggingface.co/docs/trl/dpo_trainer")
Group Relative Policy Optimization (GRPO)
What it is: Online RL method that optimizes relative to group performance, useful for tasks with verifiable rewards.
When to use:
- Tasks with automatic reward signals (code execution, math verification)
- Online learning scenarios
- When DPO offline data is insufficient
Dataset format: Prompt-only format (model generates responses, reward computed online)
Example:
# Use TRL maintained script
hf_jobs("uv", {
"script": "https://raw.githubusercontent.com/huggingface/trl/main/examples/scripts/grpo.py",
"script_args": [
"--model_name_or_path", "Qwen/Qwen2.5-0.5B-Instruct",
"--dataset_name", "trl-lib/math_shepherd",
"--output_dir", "grpo-model"
],
"flavor": "a10g-large",
"timeout": "4h",
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
})
Documentation: hf_doc_fetch("https://huggingface.co/docs/trl/grpo_trainer")
Reward Modeling
What it is: Train a reward model to score responses, used as a component in RLHF pipelines.
When to use:
- Building RLHF pipeline
- Need automatic quality scoring
- Creating reward signals for PPO training
Dataset format: Preference pairs with "chosen" and "rejected" responses
Documentation: hf_doc_fetch("https://huggingface.co/docs/trl/reward_trainer")
Method Selection Guide
| Method | Complexity | Data Required | Use Case |
|---|---|---|---|
| SFT | Low | Demonstrations | Initial fine-tuning |
| DPO | Medium | Paired preferences | Post-SFT alignment |
| GRPO | Medium | Prompts + reward fn | Online RL with automatic rewards |
| Reward | Medium | Paired preferences | Building RLHF pipeline |
Recommended Pipeline
For most use cases:
- Start with SFT - Fine-tune base model on task data
- Follow with DPO - Align to preferences using paired data
- Optional: GGUF conversion - Deploy for local inference
For advanced RL scenarios:
- Start with SFT - Fine-tune base model
- Train reward model - On preference data
Dataset Format Reference
For complete dataset format specifications, use:
hf_doc_fetch("https://huggingface.co/docs/trl/dataset_formats")
Or validate your dataset:
uv run https://huggingface.co/datasets/mcp-tools/skills/raw/main/dataset_inspector.py \
--dataset your/dataset --split train
See Also
references/training_patterns.md- Common training patterns and examplesscripts/train_sft_example.py- Complete SFT templatescripts/train_dpo_example.py- Complete DPO template- Dataset Inspector - Dataset format validation tool