skills_go_to_github / trl /references /training_methods.md
evalstate
remove kto/ppo
eb23fb4

TRL Training Methods Overview

TRL (Transformer Reinforcement Learning) provides multiple training methods for fine-tuning and aligning language models. This reference provides a brief overview of each method.

Supervised Fine-Tuning (SFT)

What it is: Standard instruction tuning with supervised learning on demonstration data.

When to use:

  • Initial fine-tuning of base models on task-specific data
  • Teaching new capabilities or domains
  • Most common starting point for fine-tuning

Dataset format: Conversational format with "messages" field, OR text field, OR prompt/completion pairs

Example:

from trl import SFTTrainer, SFTConfig

trainer = SFTTrainer(
    model="Qwen/Qwen2.5-0.5B",
    train_dataset=dataset,
    args=SFTConfig(
        output_dir="my-model",
        push_to_hub=True,
        hub_model_id="username/my-model",
        eval_strategy="no",  # Disable eval for simple example
    )
)
trainer.train()

Note: For production training with evaluation monitoring, see scripts/train_sft_example.py

Documentation: hf_doc_fetch("https://huggingface.co/docs/trl/sft_trainer")

Direct Preference Optimization (DPO)

What it is: Alignment method that trains directly on preference pairs (chosen vs rejected responses) without requiring a reward model.

When to use:

  • Aligning models to human preferences
  • Improving response quality after SFT
  • Have paired preference data (chosen/rejected responses)

Dataset format: Preference pairs with "chosen" and "rejected" fields

Example:

from trl import DPOTrainer, DPOConfig

trainer = DPOTrainer(
    model="Qwen/Qwen2.5-0.5B-Instruct",  # Use instruct model
    train_dataset=dataset,
    args=DPOConfig(
        output_dir="dpo-model",
        beta=0.1,  # KL penalty coefficient
        eval_strategy="no",  # Disable eval for simple example
    )
)
trainer.train()

Note: For production training with evaluation monitoring, see scripts/train_dpo_example.py

Documentation: hf_doc_fetch("https://huggingface.co/docs/trl/dpo_trainer")

Group Relative Policy Optimization (GRPO)

What it is: Online RL method that optimizes relative to group performance, useful for tasks with verifiable rewards.

When to use:

  • Tasks with automatic reward signals (code execution, math verification)
  • Online learning scenarios
  • When DPO offline data is insufficient

Dataset format: Prompt-only format (model generates responses, reward computed online)

Example:

# Use TRL maintained script
hf_jobs("uv", {
    "script": "https://raw.githubusercontent.com/huggingface/trl/main/examples/scripts/grpo.py",
    "script_args": [
        "--model_name_or_path", "Qwen/Qwen2.5-0.5B-Instruct",
        "--dataset_name", "trl-lib/math_shepherd",
        "--output_dir", "grpo-model"
    ],
    "flavor": "a10g-large",
    "timeout": "4h",
    "secrets": {"HF_TOKEN": "$HF_TOKEN"}
})

Documentation: hf_doc_fetch("https://huggingface.co/docs/trl/grpo_trainer")

Reward Modeling

What it is: Train a reward model to score responses, used as a component in RLHF pipelines.

When to use:

  • Building RLHF pipeline
  • Need automatic quality scoring
  • Creating reward signals for PPO training

Dataset format: Preference pairs with "chosen" and "rejected" responses

Documentation: hf_doc_fetch("https://huggingface.co/docs/trl/reward_trainer")

Method Selection Guide

Method Complexity Data Required Use Case
SFT Low Demonstrations Initial fine-tuning
DPO Medium Paired preferences Post-SFT alignment
GRPO Medium Prompts + reward fn Online RL with automatic rewards
Reward Medium Paired preferences Building RLHF pipeline

Recommended Pipeline

For most use cases:

  1. Start with SFT - Fine-tune base model on task data
  2. Follow with DPO - Align to preferences using paired data
  3. Optional: GGUF conversion - Deploy for local inference

For advanced RL scenarios:

  1. Start with SFT - Fine-tune base model
  2. Train reward model - On preference data

Dataset Format Reference

For complete dataset format specifications, use:

hf_doc_fetch("https://huggingface.co/docs/trl/dataset_formats")

Or validate your dataset:

uv run https://huggingface.co/datasets/mcp-tools/skills/raw/main/dataset_inspector.py \
  --dataset your/dataset --split train

See Also

  • references/training_patterns.md - Common training patterns and examples
  • scripts/train_sft_example.py - Complete SFT template
  • scripts/train_dpo_example.py - Complete DPO template
  • Dataset Inspector - Dataset format validation tool