evalstate
commited on
Commit
Β·
b7f1d29
1
Parent(s):
e8aa09f
Add dataset_inspector.py from HF (referenced in scripts)
Browse files- dataset_inspector.py +416 -0
dataset_inspector.py
ADDED
|
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# /// script
|
| 3 |
+
# dependencies = []
|
| 4 |
+
# ///
|
| 5 |
+
"""
|
| 6 |
+
Dataset Format Inspector for TRL Training (LLM-Optimized Output)
|
| 7 |
+
|
| 8 |
+
Inspects Hugging Face datasets to determine TRL training compatibility.
|
| 9 |
+
Uses Datasets Server API for instant results - no dataset download needed!
|
| 10 |
+
|
| 11 |
+
ULTRA-EFFICIENT: Uses HF Datasets Server API - completes in <2 seconds.
|
| 12 |
+
|
| 13 |
+
Usage with HF Jobs:
|
| 14 |
+
hf_jobs("uv", {
|
| 15 |
+
"script": "https://huggingface.co/datasets/evalstate/trl-helpers/raw/main/dataset_inspector.py",
|
| 16 |
+
"script_args": ["--dataset", "your/dataset", "--split", "train"]
|
| 17 |
+
})
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
import argparse
|
| 21 |
+
import sys
|
| 22 |
+
import json
|
| 23 |
+
import urllib.request
|
| 24 |
+
import urllib.parse
|
| 25 |
+
from typing import List, Dict, Any
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def parse_args():
|
| 29 |
+
parser = argparse.ArgumentParser(description="Inspect dataset format for TRL training")
|
| 30 |
+
parser.add_argument("--dataset", type=str, required=True, help="Dataset name")
|
| 31 |
+
parser.add_argument("--split", type=str, default="train", help="Dataset split (default: train)")
|
| 32 |
+
parser.add_argument("--config", type=str, default="default", help="Dataset config name (default: default)")
|
| 33 |
+
parser.add_argument("--preview", type=int, default=150, help="Max chars per field preview")
|
| 34 |
+
parser.add_argument("--samples", type=int, default=5, help="Number of samples to fetch (default: 5)")
|
| 35 |
+
parser.add_argument("--json-output", action="store_true", help="Output as JSON")
|
| 36 |
+
return parser.parse_args()
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def api_request(url: str) -> Dict:
|
| 40 |
+
"""Make API request to Datasets Server"""
|
| 41 |
+
try:
|
| 42 |
+
with urllib.request.urlopen(url, timeout=10) as response:
|
| 43 |
+
return json.loads(response.read().decode())
|
| 44 |
+
except urllib.error.HTTPError as e:
|
| 45 |
+
if e.code == 404:
|
| 46 |
+
return None
|
| 47 |
+
raise Exception(f"API request failed: {e.code} {e.reason}")
|
| 48 |
+
except Exception as e:
|
| 49 |
+
raise Exception(f"API request failed: {str(e)}")
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_splits(dataset: str) -> Dict:
|
| 53 |
+
"""Get available splits for dataset"""
|
| 54 |
+
url = f"https://datasets-server.huggingface.co/splits?dataset={urllib.parse.quote(dataset)}"
|
| 55 |
+
return api_request(url)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def get_rows(dataset: str, config: str, split: str, offset: int = 0, length: int = 5) -> Dict:
|
| 59 |
+
"""Get rows from dataset"""
|
| 60 |
+
url = f"https://datasets-server.huggingface.co/rows?dataset={urllib.parse.quote(dataset)}&config={config}&split={split}&offset={offset}&length={length}"
|
| 61 |
+
return api_request(url)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def find_columns(columns: List[str], patterns: List[str]) -> List[str]:
|
| 65 |
+
"""Find columns matching patterns"""
|
| 66 |
+
return [c for c in columns if any(p in c.lower() for p in patterns)]
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def check_sft_compatibility(columns: List[str]) -> Dict[str, Any]:
|
| 70 |
+
"""Check SFT compatibility"""
|
| 71 |
+
has_messages = "messages" in columns
|
| 72 |
+
has_text = "text" in columns
|
| 73 |
+
has_prompt_completion = "prompt" in columns and "completion" in columns
|
| 74 |
+
|
| 75 |
+
ready = has_messages or has_text or has_prompt_completion
|
| 76 |
+
|
| 77 |
+
possible_prompt = find_columns(columns, ["prompt", "instruction", "question", "input"])
|
| 78 |
+
possible_response = find_columns(columns, ["response", "completion", "output", "answer"])
|
| 79 |
+
|
| 80 |
+
return {
|
| 81 |
+
"ready": ready,
|
| 82 |
+
"reason": "messages" if has_messages else "text" if has_text else "prompt+completion" if has_prompt_completion else None,
|
| 83 |
+
"possible_prompt": possible_prompt[0] if possible_prompt else None,
|
| 84 |
+
"possible_response": possible_response[0] if possible_response else None,
|
| 85 |
+
"has_context": "context" in columns,
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def check_dpo_compatibility(columns: List[str]) -> Dict[str, Any]:
|
| 90 |
+
"""Check DPO compatibility"""
|
| 91 |
+
has_standard = "prompt" in columns and "chosen" in columns and "rejected" in columns
|
| 92 |
+
|
| 93 |
+
possible_prompt = find_columns(columns, ["prompt", "instruction", "question", "input"])
|
| 94 |
+
possible_chosen = find_columns(columns, ["chosen", "preferred", "winner"])
|
| 95 |
+
possible_rejected = find_columns(columns, ["rejected", "dispreferred", "loser"])
|
| 96 |
+
|
| 97 |
+
can_map = bool(possible_prompt and possible_chosen and possible_rejected)
|
| 98 |
+
|
| 99 |
+
return {
|
| 100 |
+
"ready": has_standard,
|
| 101 |
+
"can_map": can_map,
|
| 102 |
+
"prompt_col": possible_prompt[0] if possible_prompt else None,
|
| 103 |
+
"chosen_col": possible_chosen[0] if possible_chosen else None,
|
| 104 |
+
"rejected_col": possible_rejected[0] if possible_rejected else None,
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def check_grpo_compatibility(columns: List[str]) -> Dict[str, Any]:
|
| 109 |
+
"""Check GRPO compatibility"""
|
| 110 |
+
has_prompt = "prompt" in columns
|
| 111 |
+
has_no_responses = "chosen" not in columns and "rejected" not in columns
|
| 112 |
+
|
| 113 |
+
possible_prompt = find_columns(columns, ["prompt", "instruction", "question", "input"])
|
| 114 |
+
|
| 115 |
+
return {
|
| 116 |
+
"ready": has_prompt and has_no_responses,
|
| 117 |
+
"can_map": bool(possible_prompt) and has_no_responses,
|
| 118 |
+
"prompt_col": possible_prompt[0] if possible_prompt else None,
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def check_kto_compatibility(columns: List[str]) -> Dict[str, Any]:
|
| 123 |
+
"""Check KTO compatibility"""
|
| 124 |
+
return {"ready": "prompt" in columns and "completion" in columns and "label" in columns}
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def generate_mapping_code(method: str, info: Dict[str, Any]) -> str:
|
| 128 |
+
"""Generate mapping code for a training method"""
|
| 129 |
+
if method == "SFT":
|
| 130 |
+
if info["ready"]:
|
| 131 |
+
return None
|
| 132 |
+
|
| 133 |
+
prompt_col = info.get("possible_prompt")
|
| 134 |
+
response_col = info.get("possible_response")
|
| 135 |
+
has_context = info.get("has_context", False)
|
| 136 |
+
|
| 137 |
+
if not prompt_col:
|
| 138 |
+
return None
|
| 139 |
+
|
| 140 |
+
if has_context and response_col:
|
| 141 |
+
return f"""def format_for_sft(example):
|
| 142 |
+
text = f"Instruction: {{example['{prompt_col}']}}\\n\\n"
|
| 143 |
+
if example.get('context'):
|
| 144 |
+
text += f"Context: {{example['context']}}\\n\\n"
|
| 145 |
+
text += f"Response: {{example['{response_col}']}}"
|
| 146 |
+
return {{'text': text}}
|
| 147 |
+
|
| 148 |
+
dataset = dataset.map(format_for_sft, remove_columns=dataset.column_names)"""
|
| 149 |
+
elif response_col:
|
| 150 |
+
return f"""def format_for_sft(example):
|
| 151 |
+
return {{'text': f"{{example['{prompt_col}']}}\\n\\n{{example['{response_col}']}}}}
|
| 152 |
+
|
| 153 |
+
dataset = dataset.map(format_for_sft, remove_columns=dataset.column_names)"""
|
| 154 |
+
else:
|
| 155 |
+
return f"""def format_for_sft(example):
|
| 156 |
+
return {{'text': example['{prompt_col}']}}
|
| 157 |
+
|
| 158 |
+
dataset = dataset.map(format_for_sft, remove_columns=dataset.column_names)"""
|
| 159 |
+
|
| 160 |
+
elif method == "DPO":
|
| 161 |
+
if info["ready"] or not info["can_map"]:
|
| 162 |
+
return None
|
| 163 |
+
|
| 164 |
+
return f"""def format_for_dpo(example):
|
| 165 |
+
return {{
|
| 166 |
+
'prompt': example['{info['prompt_col']}'],
|
| 167 |
+
'chosen': example['{info['chosen_col']}'],
|
| 168 |
+
'rejected': example['{info['rejected_col']}'],
|
| 169 |
+
}}
|
| 170 |
+
|
| 171 |
+
dataset = dataset.map(format_for_dpo, remove_columns=dataset.column_names)"""
|
| 172 |
+
|
| 173 |
+
elif method == "GRPO":
|
| 174 |
+
if info["ready"] or not info["can_map"]:
|
| 175 |
+
return None
|
| 176 |
+
|
| 177 |
+
return f"""def format_for_grpo(example):
|
| 178 |
+
return {{'prompt': example['{info['prompt_col']}']}}
|
| 179 |
+
|
| 180 |
+
dataset = dataset.map(format_for_grpo, remove_columns=dataset.column_names)"""
|
| 181 |
+
|
| 182 |
+
return None
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def format_value_preview(value: Any, max_chars: int) -> str:
|
| 186 |
+
"""Format value for preview"""
|
| 187 |
+
if value is None:
|
| 188 |
+
return "None"
|
| 189 |
+
elif isinstance(value, str):
|
| 190 |
+
return value[:max_chars] + ("..." if len(value) > max_chars else "")
|
| 191 |
+
elif isinstance(value, list):
|
| 192 |
+
if len(value) > 0 and isinstance(value[0], dict):
|
| 193 |
+
return f"[{len(value)} items] Keys: {list(value[0].keys())}"
|
| 194 |
+
preview = str(value)
|
| 195 |
+
return preview[:max_chars] + ("..." if len(preview) > max_chars else "")
|
| 196 |
+
else:
|
| 197 |
+
preview = str(value)
|
| 198 |
+
return preview[:max_chars] + ("..." if len(preview) > max_chars else "")
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def main():
|
| 202 |
+
args = parse_args()
|
| 203 |
+
|
| 204 |
+
print(f"Fetching dataset info via Datasets Server API...")
|
| 205 |
+
|
| 206 |
+
try:
|
| 207 |
+
# Get splits info
|
| 208 |
+
splits_data = get_splits(args.dataset)
|
| 209 |
+
if not splits_data or "splits" not in splits_data:
|
| 210 |
+
print(f"ERROR: Could not fetch splits for dataset '{args.dataset}'")
|
| 211 |
+
print(f" Dataset may not exist or is not accessible via Datasets Server API")
|
| 212 |
+
sys.exit(1)
|
| 213 |
+
|
| 214 |
+
# Find the right config
|
| 215 |
+
available_configs = set()
|
| 216 |
+
split_found = False
|
| 217 |
+
config_to_use = args.config
|
| 218 |
+
|
| 219 |
+
for split_info in splits_data["splits"]:
|
| 220 |
+
available_configs.add(split_info["config"])
|
| 221 |
+
if split_info["config"] == args.config and split_info["split"] == args.split:
|
| 222 |
+
split_found = True
|
| 223 |
+
|
| 224 |
+
# If default config not found, try first available
|
| 225 |
+
if not split_found and available_configs:
|
| 226 |
+
config_to_use = list(available_configs)[0]
|
| 227 |
+
print(f"Config '{args.config}' not found, trying '{config_to_use}'...")
|
| 228 |
+
|
| 229 |
+
# Get rows
|
| 230 |
+
rows_data = get_rows(args.dataset, config_to_use, args.split, offset=0, length=args.samples)
|
| 231 |
+
|
| 232 |
+
if not rows_data or "rows" not in rows_data:
|
| 233 |
+
print(f"ERROR: Could not fetch rows for dataset '{args.dataset}'")
|
| 234 |
+
print(f" Split '{args.split}' may not exist")
|
| 235 |
+
print(f" Available configs: {', '.join(sorted(available_configs))}")
|
| 236 |
+
sys.exit(1)
|
| 237 |
+
|
| 238 |
+
rows = rows_data["rows"]
|
| 239 |
+
if not rows:
|
| 240 |
+
print(f"ERROR: No rows found in split '{args.split}'")
|
| 241 |
+
sys.exit(1)
|
| 242 |
+
|
| 243 |
+
# Extract column info from first row
|
| 244 |
+
first_row = rows[0]["row"]
|
| 245 |
+
columns = list(first_row.keys())
|
| 246 |
+
features = rows_data.get("features", [])
|
| 247 |
+
|
| 248 |
+
# Get total count if available
|
| 249 |
+
total_examples = "Unknown"
|
| 250 |
+
for split_info in splits_data["splits"]:
|
| 251 |
+
if split_info["config"] == config_to_use and split_info["split"] == args.split:
|
| 252 |
+
total_examples = f"{split_info.get('num_examples', 'Unknown'):,}" if isinstance(split_info.get('num_examples'), int) else "Unknown"
|
| 253 |
+
break
|
| 254 |
+
|
| 255 |
+
except Exception as e:
|
| 256 |
+
print(f"ERROR: {str(e)}")
|
| 257 |
+
sys.exit(1)
|
| 258 |
+
|
| 259 |
+
# Run compatibility checks
|
| 260 |
+
sft_info = check_sft_compatibility(columns)
|
| 261 |
+
dpo_info = check_dpo_compatibility(columns)
|
| 262 |
+
grpo_info = check_grpo_compatibility(columns)
|
| 263 |
+
kto_info = check_kto_compatibility(columns)
|
| 264 |
+
|
| 265 |
+
# Determine recommended methods
|
| 266 |
+
recommended = []
|
| 267 |
+
if sft_info["ready"]:
|
| 268 |
+
recommended.append("SFT")
|
| 269 |
+
elif sft_info["possible_prompt"]:
|
| 270 |
+
recommended.append("SFT (needs mapping)")
|
| 271 |
+
|
| 272 |
+
if dpo_info["ready"]:
|
| 273 |
+
recommended.append("DPO")
|
| 274 |
+
elif dpo_info["can_map"]:
|
| 275 |
+
recommended.append("DPO (needs mapping)")
|
| 276 |
+
|
| 277 |
+
if grpo_info["ready"]:
|
| 278 |
+
recommended.append("GRPO")
|
| 279 |
+
elif grpo_info["can_map"]:
|
| 280 |
+
recommended.append("GRPO (needs mapping)")
|
| 281 |
+
|
| 282 |
+
if kto_info["ready"]:
|
| 283 |
+
recommended.append("KTO")
|
| 284 |
+
|
| 285 |
+
# JSON output mode
|
| 286 |
+
if args.json_output:
|
| 287 |
+
result = {
|
| 288 |
+
"dataset": args.dataset,
|
| 289 |
+
"config": config_to_use,
|
| 290 |
+
"split": args.split,
|
| 291 |
+
"total_examples": total_examples,
|
| 292 |
+
"columns": columns,
|
| 293 |
+
"features": [{"name": f["name"], "type": f["type"]} for f in features] if features else [],
|
| 294 |
+
"compatibility": {
|
| 295 |
+
"SFT": sft_info,
|
| 296 |
+
"DPO": dpo_info,
|
| 297 |
+
"GRPO": grpo_info,
|
| 298 |
+
"KTO": kto_info,
|
| 299 |
+
},
|
| 300 |
+
"recommended_methods": recommended,
|
| 301 |
+
}
|
| 302 |
+
print(json.dumps(result, indent=2))
|
| 303 |
+
sys.exit(0)
|
| 304 |
+
|
| 305 |
+
# Human-readable output optimized for LLM parsing
|
| 306 |
+
print("=" * 80)
|
| 307 |
+
print(f"DATASET INSPECTION RESULTS")
|
| 308 |
+
print("=" * 80)
|
| 309 |
+
|
| 310 |
+
print(f"\nDataset: {args.dataset}")
|
| 311 |
+
print(f"Config: {config_to_use}")
|
| 312 |
+
print(f"Split: {args.split}")
|
| 313 |
+
print(f"Total examples: {total_examples}")
|
| 314 |
+
print(f"Samples fetched: {len(rows)}")
|
| 315 |
+
|
| 316 |
+
print(f"\n{'COLUMNS':-<80}")
|
| 317 |
+
if features:
|
| 318 |
+
for feature in features:
|
| 319 |
+
print(f" {feature['name']}: {feature['type']}")
|
| 320 |
+
else:
|
| 321 |
+
for col in columns:
|
| 322 |
+
print(f" {col}: (type info not available)")
|
| 323 |
+
|
| 324 |
+
print(f"\n{'EXAMPLE DATA':-<80}")
|
| 325 |
+
example = first_row
|
| 326 |
+
for col in columns:
|
| 327 |
+
value = example.get(col)
|
| 328 |
+
display = format_value_preview(value, args.preview)
|
| 329 |
+
print(f"\n{col}:")
|
| 330 |
+
print(f" {display}")
|
| 331 |
+
|
| 332 |
+
print(f"\n{'TRAINING METHOD COMPATIBILITY':-<80}")
|
| 333 |
+
|
| 334 |
+
# SFT
|
| 335 |
+
print(f"\n[SFT] {'β READY' if sft_info['ready'] else 'β NEEDS MAPPING'}")
|
| 336 |
+
if sft_info["ready"]:
|
| 337 |
+
print(f" Reason: Dataset has '{sft_info['reason']}' field")
|
| 338 |
+
print(f" Action: Use directly with SFTTrainer")
|
| 339 |
+
elif sft_info["possible_prompt"]:
|
| 340 |
+
print(f" Detected: prompt='{sft_info['possible_prompt']}' response='{sft_info['possible_response']}'")
|
| 341 |
+
print(f" Action: Apply mapping code (see below)")
|
| 342 |
+
else:
|
| 343 |
+
print(f" Status: Cannot determine mapping - manual inspection needed")
|
| 344 |
+
|
| 345 |
+
# DPO
|
| 346 |
+
print(f"\n[DPO] {'β READY' if dpo_info['ready'] else 'β NEEDS MAPPING' if dpo_info['can_map'] else 'β INCOMPATIBLE'}")
|
| 347 |
+
if dpo_info["ready"]:
|
| 348 |
+
print(f" Reason: Dataset has 'prompt', 'chosen', 'rejected' fields")
|
| 349 |
+
print(f" Action: Use directly with DPOTrainer")
|
| 350 |
+
elif dpo_info["can_map"]:
|
| 351 |
+
print(f" Detected: prompt='{dpo_info['prompt_col']}' chosen='{dpo_info['chosen_col']}' rejected='{dpo_info['rejected_col']}'")
|
| 352 |
+
print(f" Action: Apply mapping code (see below)")
|
| 353 |
+
else:
|
| 354 |
+
print(f" Status: Missing required fields (prompt + chosen + rejected)")
|
| 355 |
+
|
| 356 |
+
# GRPO
|
| 357 |
+
print(f"\n[GRPO] {'β READY' if grpo_info['ready'] else 'β NEEDS MAPPING' if grpo_info['can_map'] else 'β INCOMPATIBLE'}")
|
| 358 |
+
if grpo_info["ready"]:
|
| 359 |
+
print(f" Reason: Dataset has 'prompt' field")
|
| 360 |
+
print(f" Action: Use directly with GRPOTrainer")
|
| 361 |
+
elif grpo_info["can_map"]:
|
| 362 |
+
print(f" Detected: prompt='{grpo_info['prompt_col']}'")
|
| 363 |
+
print(f" Action: Apply mapping code (see below)")
|
| 364 |
+
else:
|
| 365 |
+
print(f" Status: Missing prompt field")
|
| 366 |
+
|
| 367 |
+
# KTO
|
| 368 |
+
print(f"\n[KTO] {'β READY' if kto_info['ready'] else 'β INCOMPATIBLE'}")
|
| 369 |
+
if kto_info["ready"]:
|
| 370 |
+
print(f" Reason: Dataset has 'prompt', 'completion', 'label' fields")
|
| 371 |
+
print(f" Action: Use directly with KTOTrainer")
|
| 372 |
+
else:
|
| 373 |
+
print(f" Status: Missing required fields (prompt + completion + label)")
|
| 374 |
+
|
| 375 |
+
# Mapping code
|
| 376 |
+
print(f"\n{'MAPPING CODE (if needed)':-<80}")
|
| 377 |
+
|
| 378 |
+
mapping_needed = False
|
| 379 |
+
|
| 380 |
+
sft_mapping = generate_mapping_code("SFT", sft_info)
|
| 381 |
+
if sft_mapping:
|
| 382 |
+
print(f"\n# For SFT Training:")
|
| 383 |
+
print(sft_mapping)
|
| 384 |
+
mapping_needed = True
|
| 385 |
+
|
| 386 |
+
dpo_mapping = generate_mapping_code("DPO", dpo_info)
|
| 387 |
+
if dpo_mapping:
|
| 388 |
+
print(f"\n# For DPO Training:")
|
| 389 |
+
print(dpo_mapping)
|
| 390 |
+
mapping_needed = True
|
| 391 |
+
|
| 392 |
+
grpo_mapping = generate_mapping_code("GRPO", grpo_info)
|
| 393 |
+
if grpo_mapping:
|
| 394 |
+
print(f"\n# For GRPO Training:")
|
| 395 |
+
print(grpo_mapping)
|
| 396 |
+
mapping_needed = True
|
| 397 |
+
|
| 398 |
+
if not mapping_needed:
|
| 399 |
+
print("\nNo mapping needed - dataset is ready for training!")
|
| 400 |
+
|
| 401 |
+
print(f"\n{'SUMMARY':-<80}")
|
| 402 |
+
print(f"Recommended training methods: {', '.join(recommended) if recommended else 'None (dataset needs formatting)'}")
|
| 403 |
+
print(f"\nNote: Used Datasets Server API (instant, no download required)")
|
| 404 |
+
|
| 405 |
+
print("\n" + "=" * 80)
|
| 406 |
+
sys.exit(0)
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
if __name__ == "__main__":
|
| 410 |
+
try:
|
| 411 |
+
main()
|
| 412 |
+
except KeyboardInterrupt:
|
| 413 |
+
sys.exit(0)
|
| 414 |
+
except Exception as e:
|
| 415 |
+
print(f"ERROR: {e}", file=sys.stderr)
|
| 416 |
+
sys.exit(1)
|