evalstate
commited on
Commit
·
eb23fb4
1
Parent(s):
59eece6
remove kto/ppo
Browse files- trl/SKILL.md +2 -2
- trl/references/training_methods.md +0 -31
trl/SKILL.md
CHANGED
|
@@ -193,7 +193,7 @@ TRL provides battle-tested scripts for all methods. Can be run from URLs:
|
|
| 193 |
|
| 194 |
```python
|
| 195 |
hf_jobs("uv", {
|
| 196 |
-
"script": "https://
|
| 197 |
"script_args": [
|
| 198 |
"--model_name_or_path", "Qwen/Qwen2.5-0.5B",
|
| 199 |
"--dataset_name", "trl-lib/Capybara",
|
|
@@ -209,7 +209,7 @@ hf_jobs("uv", {
|
|
| 209 |
|
| 210 |
**Benefits:** No code to write, maintained by TRL team, production-tested
|
| 211 |
**When to use:** Standard TRL training, quick experiments, don't need custom code
|
| 212 |
-
**Available:**
|
| 213 |
|
| 214 |
### Finding More UV Scripts on Hub
|
| 215 |
|
|
|
|
| 193 |
|
| 194 |
```python
|
| 195 |
hf_jobs("uv", {
|
| 196 |
+
"script": "https://github.com/huggingface/trl/blob/main/trl/scripts/sft.py",
|
| 197 |
"script_args": [
|
| 198 |
"--model_name_or_path", "Qwen/Qwen2.5-0.5B",
|
| 199 |
"--dataset_name", "trl-lib/Capybara",
|
|
|
|
| 209 |
|
| 210 |
**Benefits:** No code to write, maintained by TRL team, production-tested
|
| 211 |
**When to use:** Standard TRL training, quick experiments, don't need custom code
|
| 212 |
+
**Available:** Scripts are available from https://github.com/huggingface/trl/tree/main/examples/scripts
|
| 213 |
|
| 214 |
### Finding More UV Scripts on Hub
|
| 215 |
|
trl/references/training_methods.md
CHANGED
|
@@ -94,19 +94,6 @@ hf_jobs("uv", {
|
|
| 94 |
|
| 95 |
**Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/grpo_trainer")`
|
| 96 |
|
| 97 |
-
## Kahneman-Tversky Optimization (KTO)
|
| 98 |
-
|
| 99 |
-
**What it is:** Preference tuning without paired data - uses independent positive/negative examples.
|
| 100 |
-
|
| 101 |
-
**When to use:**
|
| 102 |
-
- Have preference data but not paired comparisons
|
| 103 |
-
- Simpler data collection than DPO
|
| 104 |
-
- Want to incorporate human feedback without explicit pairs
|
| 105 |
-
|
| 106 |
-
**Dataset format:** Examples with binary labels (desirable/undesirable) but not paired
|
| 107 |
-
|
| 108 |
-
**Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/kto_trainer")`
|
| 109 |
-
|
| 110 |
## Reward Modeling
|
| 111 |
|
| 112 |
**What it is:** Train a reward model to score responses, used as a component in RLHF pipelines.
|
|
@@ -120,21 +107,6 @@ hf_jobs("uv", {
|
|
| 120 |
|
| 121 |
**Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/reward_trainer")`
|
| 122 |
|
| 123 |
-
## Proximal Policy Optimization (PPO)
|
| 124 |
-
|
| 125 |
-
**What it is:** Classic RLHF method using a reward model to guide policy optimization.
|
| 126 |
-
|
| 127 |
-
**When to use:**
|
| 128 |
-
- Full RLHF pipeline
|
| 129 |
-
- Have trained reward model
|
| 130 |
-
- Need fine-grained control over optimization
|
| 131 |
-
|
| 132 |
-
**Requirements:** Pre-trained reward model
|
| 133 |
-
|
| 134 |
-
**Note:** PPO is more complex than DPO. For most use cases, start with DPO.
|
| 135 |
-
|
| 136 |
-
**Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/ppo_trainer")`
|
| 137 |
-
|
| 138 |
## Method Selection Guide
|
| 139 |
|
| 140 |
| Method | Complexity | Data Required | Use Case |
|
|
@@ -142,9 +114,7 @@ hf_jobs("uv", {
|
|
| 142 |
| **SFT** | Low | Demonstrations | Initial fine-tuning |
|
| 143 |
| **DPO** | Medium | Paired preferences | Post-SFT alignment |
|
| 144 |
| **GRPO** | Medium | Prompts + reward fn | Online RL with automatic rewards |
|
| 145 |
-
| **KTO** | Medium | Unpaired preferences | Alignment with simpler data |
|
| 146 |
| **Reward** | Medium | Paired preferences | Building RLHF pipeline |
|
| 147 |
-
| **PPO** | High | Demonstrations + reward model | Full RLHF |
|
| 148 |
|
| 149 |
## Recommended Pipeline
|
| 150 |
|
|
@@ -156,7 +126,6 @@ hf_jobs("uv", {
|
|
| 156 |
**For advanced RL scenarios:**
|
| 157 |
1. **Start with SFT** - Fine-tune base model
|
| 158 |
2. **Train reward model** - On preference data
|
| 159 |
-
3. **Apply GRPO or PPO** - Online RL with reward model
|
| 160 |
|
| 161 |
## Dataset Format Reference
|
| 162 |
|
|
|
|
| 94 |
|
| 95 |
**Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/grpo_trainer")`
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
## Reward Modeling
|
| 98 |
|
| 99 |
**What it is:** Train a reward model to score responses, used as a component in RLHF pipelines.
|
|
|
|
| 107 |
|
| 108 |
**Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/reward_trainer")`
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
## Method Selection Guide
|
| 111 |
|
| 112 |
| Method | Complexity | Data Required | Use Case |
|
|
|
|
| 114 |
| **SFT** | Low | Demonstrations | Initial fine-tuning |
|
| 115 |
| **DPO** | Medium | Paired preferences | Post-SFT alignment |
|
| 116 |
| **GRPO** | Medium | Prompts + reward fn | Online RL with automatic rewards |
|
|
|
|
| 117 |
| **Reward** | Medium | Paired preferences | Building RLHF pipeline |
|
|
|
|
| 118 |
|
| 119 |
## Recommended Pipeline
|
| 120 |
|
|
|
|
| 126 |
**For advanced RL scenarios:**
|
| 127 |
1. **Start with SFT** - Fine-tune base model
|
| 128 |
2. **Train reward model** - On preference data
|
|
|
|
| 129 |
|
| 130 |
## Dataset Format Reference
|
| 131 |
|