# simord_hf_loader.py # HF Datasets loader that uses mediqa-oe.data.process_data.attach_transcript_section # to merge transcripts into local annotations: train, test1, test2. # # Dataset license: CDLA-2.0-permissive (for SIMORD). Respect upstream source licenses. # # Requirements: # pip install datasets nltk requests # pip install -e /path/to/mediqa-oe # or add repo to PYTHONPATH # # Usage: # from datasets import load_dataset # ds = load_dataset( # "path/to/simord_hf_loader.py", # data_dir="path/to/annotations_dir", # with train.json, test1.json, test2.json (lists of dicts) # ) # print(ds) # # The loader will auto-download ACI-Bench and PriMock57 from GitHub to create transcript_dict. import json import os import re from typing import Dict, Iterable, List, Tuple import datasets import nltk # Ensure sentence tokenizer needed by mediqa-oe code is available try: nltk.data.find("tokenizers/punkt_tab") except LookupError: nltk.download("punkt_tab") # ---- Import the exact merge function from your repo ---- # (Relies on your local mediqa-oe being importable) from mediqa_oe.data.process_data import attach_transcript_section # noqa: E402 # ---- Sources (same as your script) ---- ACI_BENCH_URL = "https://github.com/wyim/aci-bench/archive/refs/heads/main.zip" PRIMOCK_URL = "https://github.com/babylonhealth/primock57/archive/refs/heads/main.zip" _DESCRIPTION = """\ SIMORD loader that merges transcripts from ACI-Bench and PriMock57 into local annotations using mediqa-oe.data.process_data.attach_transcript_section. """ _CITATION = r"""@article{corbeil2025empowering, title={Empowering Healthcare Practitioners with Language Models: Structuring Speech Transcripts in Two Real-World Clinical Applications}, author={Corbeil, Jean-Philippe and Ben Abacha, Asma and Michalopoulos, George and Swazinna, Patrick and Del-Agua, Miguel and Tremblay, Julien and Jeeson Daniel, Aju and Bader, Corey and Cho, Yoon-Chan and Krishnan, Parvathi and Bodenstab, Nathan and Lin, Tony and Teng, Wen and Beaulieu, Francois and Vozila, Paul}, journal={arXiv preprint arXiv:2507.05517}, year={2025} }""" _LICENSE = "CDLA-2.0-permissive" _HOMEPAGE = "https://huggingface.co/datasets//SIMORD" # ----------------------- helpers to read upstream transcripts ----------------------- def _walk_json_files(directory: str) -> List[str]: out = [] for d, _, files in os.walk(directory): for fn in files: if fn.lower().endswith(".json"): out.append(os.path.join(d, fn)) out.sort() return out def _read_json_records(path: str) -> Iterable[dict]: with open(path, "r", encoding="utf-8") as f: data = json.load(f) if isinstance(data, dict) and "data" in data and isinstance(data["data"], list): for r in data["data"]: yield r elif isinstance(data, list): for r in data: yield r else: # single dict record yield data def _normalize_id_from_aci(file_field: str, basename: str) -> str: # matches your script: # file_id = "_".join(d.get("file", "").split("-")[0:2]) # transcript_id = "acibench_" + file_id + "_" + basename file_id = "_".join((file_field or "").split("-")[0:2]) return f"acibench_{file_id}_{basename}" def _build_aci_transcript_dict(root: str) -> Dict[str, dict]: """ Mirror of read_aci_bench_data + walk_aci_bench_directory: looks in .../aci-bench-main/data/challenge_data_json and .../src_experiment_data_json and builds {transcript_id: {"transcript": }} """ tdict: Dict[str, dict] = {} base = None # Find the 'aci-bench-main' folder inside root for name in os.listdir(root): if name.startswith("aci-bench"): base = os.path.join(root, name) break if not base: return tdict for sub in ("data/challenge_data_json", "data/src_experiment_data_json"): p = os.path.join(base, sub) if not os.path.isdir(p): continue for fp in _walk_json_files(p): basename = os.path.splitext(os.path.basename(fp))[0] for rec in _read_json_records(fp): src = rec.get("src") file_field = rec.get("file", "") tid = _normalize_id_from_aci(file_field, basename) if src: tdict[tid] = {"transcript": src} return tdict def _read_text(path: str) -> str: with open(path, "r", encoding="utf-8") as f: return f.read() def _normalize_primock_id(stem: str) -> str: # replicate replacements used in your script: # primock_id = filename.replace("day", "primock57_") # primock_id = primock_id.replace("consultation0", "") # primock_id = primock_id.replace("consultation", "") s = stem s = s.replace("day", "primock57_") s = s.replace("consultation0", "") s = s.replace("consultation", "") return s def _build_primock_transcript_dict(root: str) -> Dict[str, dict]: """ Mirror of read_primock_data post-conversion: reads *.txt in primock57-main/transcripts and applies the same tag normalization. """ tdict: Dict[str, dict] = {} base = None for name in os.listdir(root): if name.startswith("primock57"): base = os.path.join(root, name) break if not base: return tdict tx_dir = os.path.join(base, "transcripts") if not os.path.isdir(tx_dir): # If transcripts haven't been generated yet by upstream script, we skip. return tdict for fn in os.listdir(tx_dir): if not fn.lower().endswith(".txt"): continue fp = os.path.join(tx_dir, fn) lines = [ln.strip() for ln in _read_text(fp).splitlines() if ln.strip()] norm = [] for line in lines: line = line.replace("Doctor:", "[doctor]").replace("Patient:", "[patient]") norm.append(line) stem = os.path.splitext(fn)[0] primock_id = _normalize_primock_id(stem) tdict[primock_id] = {"transcript": "\n".join(norm)} return tdict def _load_annotations(path: str) -> List[dict]: # Expect a JSON array (list of dicts). If JSONL, we also handle it gracefully. if path.lower().endswith((".jsonl", ".ndjson")): out = [] with open(path, "r", encoding="utf-8") as f: for line in f: line = line.strip() if line: out.append(json.loads(line)) return out with open(path, "r", encoding="utf-8") as f: data = json.load(f) if isinstance(data, list): return data raise ValueError(f"{path} must be a JSON list (or JSONL).") # ----------------------- HF builder ----------------------- class SimordMergeConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super().__init__(version=datasets.Version("1.0.0"), **kwargs) class SimordMerge(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ SimordMergeConfig( name="default", description="SIMORD with transcripts merged via attach_transcript_section from mediqa-oe.", ) ] DEFAULT_CONFIG_NAME = "default" def _info(self) -> datasets.DatasetInfo: # We expose a compact schema: # - id # - transcript: sequence of {turn_id, speaker, transcript} # - raw: JSON string dump of the full (possibly augmented) annotation record features = datasets.Features( { "id": datasets.Value("string"), "transcript": datasets.Sequence( { "turn_id": datasets.Value("int32"), "speaker": datasets.Value("string"), "transcript": datasets.Value("string"), } ), "raw": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager): data_dir = self.config.data_dir or os.getcwd() # Map from local file name → desired HF split name file_map = { "train.json": ("train", datasets.Split.TRAIN), "dev.json": ("test1", "test1"), # expose dev as "test1" "test.json": ("test2", "test2"), # expose test as "test2" } # Download upstream corpora once aci_dir = dl_manager.download_and_extract(ACI_BENCH_URL) primock_dir = dl_manager.download_and_extract(PRIMOCK_URL) self._transcript_dict = {} self._transcript_dict.update(_build_aci_transcript_dict(aci_dir)) self._transcript_dict.update(_build_primock_transcript_dict(primock_dir)) splits = [] for fname, (exposed_name, hf_split) in file_map.items(): path = os.path.join(data_dir, fname) if os.path.isfile(path): splits.append( datasets.SplitGenerator( name=hf_split, gen_kwargs={"ann_path": path, "exposed_name": exposed_name}, ) ) return splits def _generate_examples(self, ann_path: str, exposed_name: str): section = _load_annotations(ann_path) attach_transcript_section(section, self._transcript_dict) for idx, rec in enumerate(section): rid = str(rec.get("id", idx)) turns = rec.get("transcript") or [] yield idx, { "id": rid, "split": exposed_name, # optional field to carry which split it came from "transcript": turns, "raw": json.dumps(rec, ensure_ascii=False), }