|
|
import os, json |
|
|
import numpy as np |
|
|
from sklearn import metrics |
|
|
from tqdm import tqdm |
|
|
|
|
|
|
|
|
def final_auc(data): |
|
|
thresholds = [0.05 * i for i in range(21)] |
|
|
cious = [np.mean(np.array(data) >= t) for t in thresholds] |
|
|
return metrics.auc(thresholds, cious) |
|
|
|
|
|
def final_ciou(data): |
|
|
return np.mean(data) if data else 0.0 |
|
|
|
|
|
def parse_task_flags(annotations): |
|
|
flags = {"Single-Sound": False, "Mixed-Sound": False, "Multi-Entity": False, "Off-Screen": False} |
|
|
for ann in annotations: |
|
|
task = ann["task"] |
|
|
if task not in flags: |
|
|
raise ValueError(f"Unknown task: {task}") |
|
|
flags[task] = True |
|
|
return flags |
|
|
|
|
|
|
|
|
|
|
|
heatmap_threshold = 0.1 |
|
|
width, height = 640, 360 |
|
|
folder = "AVATAR" |
|
|
file = "evaluation_results.json" |
|
|
model = "your_model_name" |
|
|
data_path = os.path.join("your_heatmap_root", model, folder, file) |
|
|
benchmark_path = "AVATAR/metadata" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ciou_by_task = { |
|
|
"Total": [], |
|
|
"Single-Sound": [], |
|
|
"Mixed-Sound": [], |
|
|
"Multi-Entity": [] |
|
|
} |
|
|
off_screen_tn, off_screen_fp = 0, 0 |
|
|
|
|
|
|
|
|
|
|
|
with open(data_path, 'r') as f: |
|
|
data = json.load(f) |
|
|
|
|
|
|
|
|
|
|
|
for frame_key, result in tqdm(data.items()): |
|
|
video_id = "_".join(frame_key.split("_")[:-1]) |
|
|
frame_num = int(frame_key.split("_")[-1]) |
|
|
metadata_file = os.path.join(benchmark_path, video_id, f"{frame_num:05d}.json") |
|
|
|
|
|
with open(metadata_file, 'r') as f: |
|
|
annotations = json.load(f)["annotations"] |
|
|
|
|
|
flags = parse_task_flags(annotations) |
|
|
ciou = result["cious"][str(heatmap_threshold)] |
|
|
ciou_by_task["Total"].append(ciou) |
|
|
|
|
|
for task in ["Single-Sound", "Mixed-Sound", "Multi-Entity"]: |
|
|
if flags[task]: |
|
|
ciou_by_task[task].append(ciou) |
|
|
|
|
|
if flags["Off-Screen"]: |
|
|
stats = result["pixel_statistics"][str(heatmap_threshold)] |
|
|
off_screen_tn += width * height - stats["fp"] |
|
|
off_screen_fp += stats["fp"] |
|
|
|
|
|
|
|
|
|
|
|
summary = {} |
|
|
for task, values in ciou_by_task.items(): |
|
|
summary[task] = { |
|
|
"ciou": final_ciou(values), |
|
|
"auc": final_auc(values) |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
print(f"model: {model}, file: {file}\n") |
|
|
|
|
|
for task in ["Total", "Single-Sound", "Mixed-Sound", "Multi-Entity"]: |
|
|
print(f"--- {task.lower()} ---") |
|
|
print(f"final ciou: {summary[task]['ciou']:.4f}") |
|
|
print(f"final auc : {summary[task]['auc']:.4f}\n") |
|
|
|
|
|
print("--- off-screen pixel statistics ---") |
|
|
print("tn pixels \t fp pixels") |
|
|
print(f"{off_screen_tn} \t {off_screen_fp}") |
|
|
|