File size: 2,976 Bytes
8fd498b
 
 
b70d481
 
 
 
8fd498b
 
 
b70d481
3992447
 
8fd498b
 
fd5bf0d
8fd498b
 
 
 
5bf2769
 
8fd498b
5bf2769
 
8fd498b
 
 
 
 
 
 
 
 
5bf2769
 
 
 
 
 
 
 
 
 
8fd498b
 
 
c26bc69
 
 
 
ba2b938
c26bc69
 
 
 
8fd498b
eba9050
5bf2769
 
fd5bf0d
5bf2769
 
c26bc69
 
 
 
 
 
 
 
 
5bf2769
 
 
 
 
 
 
 
 
 
c26bc69
eba9050
c26bc69
e439a71
c26bc69
 
8fd498b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# /// script
# requires-python = ">=3.12"
# dependencies = [
#     "numpy",
#     "einops",
#     "pandas",
#     "protobuf",
#     "torch",
#     "torchvision",
#     "transformers",
#     "timm",
#     "diffusers",
#     "sentence-transformers",
#     "accelerate",
#     "peft",
#     "slack-sdk",
# ]
# ///

try:
    # Load model directly
    from transformers import AutoProcessor, AutoModelForImageTextToText
    
    processor = AutoProcessor.from_pretrained("LiquidAI/LFM2-VL-3B")
    model = AutoModelForImageTextToText.from_pretrained("LiquidAI/LFM2-VL-3B")
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"},
                {"type": "text", "text": "What animal is on the candy?"}
            ]
        },
    ]
    inputs = processor.apply_chat_template(
    	messages,
    	add_generation_prompt=True,
    	tokenize=True,
    	return_dict=True,
    	return_tensors="pt",
    ).to(model.device)
    
    outputs = model.generate(**inputs, max_new_tokens=40)
    print(processor.decode(outputs[0][inputs["input_ids"].shape[-1]:]))
    with open('LiquidAI_LFM2-VL-3B_1.txt', 'w', encoding='utf-8') as f:
        f.write('Everything was good in LiquidAI_LFM2-VL-3B_1.txt')
except Exception as e:
    import os
    from slack_sdk import WebClient
    client = WebClient(token=os.environ['SLACK_TOKEN'])
    client.chat_postMessage(
        channel='#hub-model-metadata-snippets-sprint',
        text='Problem in <https://huggingface.co/datasets/model-metadata/code_execution_files/blob/main/LiquidAI_LFM2-VL-3B_1.txt|LiquidAI_LFM2-VL-3B_1.txt>',
    )

    with open('LiquidAI_LFM2-VL-3B_1.txt', 'a', encoding='utf-8') as f:
        import traceback
        f.write('''```CODE: 
# Load model directly
from transformers import AutoProcessor, AutoModelForImageTextToText

processor = AutoProcessor.from_pretrained("LiquidAI/LFM2-VL-3B")
model = AutoModelForImageTextToText.from_pretrained("LiquidAI/LFM2-VL-3B")
messages = [
    {
        "role": "user",
        "content": [
            {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"},
            {"type": "text", "text": "What animal is on the candy?"}
        ]
    },
]
inputs = processor.apply_chat_template(
	messages,
	add_generation_prompt=True,
	tokenize=True,
	return_dict=True,
	return_tensors="pt",
).to(model.device)

outputs = model.generate(**inputs, max_new_tokens=40)
print(processor.decode(outputs[0][inputs["input_ids"].shape[-1]:]))
```

ERROR: 
''')
        traceback.print_exc(file=f)
    
finally:
    from huggingface_hub import upload_file
    upload_file(
        path_or_fileobj='LiquidAI_LFM2-VL-3B_1.txt',
        repo_id='model-metadata/code_execution_files',
        path_in_repo='LiquidAI_LFM2-VL-3B_1.txt',
        repo_type='dataset',
    )