File size: 2,658 Bytes
fcb97fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "torch",
# "torchvision",
# "transformers",
# "diffusers",
# "sentence-transformers",
# "accelerate",
# "peft",
# "slack-sdk",
# ]
# ///
try:
tools = [
{
"name": "get_weather",
"description": "Get the weather in a city",
"parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city to get the weather for"}}}}
]
messages = [
{
"role": "user",
"content": "Hello! How is the weather today in Copenhagen?"
}
]
inputs = tokenizer.apply_chat_template(
messages,
enable_thinking=False, # True works as well, your choice!
xml_tools=tools,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
with open('HuggingFaceTB_SmolLM3-3B_6.txt', 'w', encoding='utf-8') as f:
f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_6.txt')
except Exception as e:
import os
from slack_sdk import WebClient
client = WebClient(token=os.environ['SLACK_TOKEN'])
client.chat_postMessage(
channel='#hub-model-metadata-snippets-sprint',
text='Problem in <https://huggingface.co/datasets/model-metadata/code_execution_files/blob/main/HuggingFaceTB_SmolLM3-3B_6.txt|HuggingFaceTB_SmolLM3-3B_6.txt>',
)
with open('HuggingFaceTB_SmolLM3-3B_6.txt', 'a', encoding='utf-8') as f:
import traceback
f.write('''```CODE:
tools = [
{
"name": "get_weather",
"description": "Get the weather in a city",
"parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city to get the weather for"}}}}
]
messages = [
{
"role": "user",
"content": "Hello! How is the weather today in Copenhagen?"
}
]
inputs = tokenizer.apply_chat_template(
messages,
enable_thinking=False, # True works as well, your choice!
xml_tools=tools,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
ERROR:
''')
traceback.print_exc(file=f)
finally:
from huggingface_hub import upload_file
upload_file(
path_or_fileobj='HuggingFaceTB_SmolLM3-3B_6.txt',
repo_id='model-metadata/code_execution_files',
path_in_repo='HuggingFaceTB_SmolLM3-3B_6.txt',
repo_type='dataset',
)
|