File size: 2,486 Bytes
77e7fcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "torch",
# "torchvision",
# "transformers",
# "diffusers",
# "sentence-transformers",
# "accelerate",
# "peft",
# "slack-sdk",
# ]
# ///
try:
# prepare the model input
prompt = "Give me a brief explanation of gravity in simple terms."
messages_think = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages_think,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate the output
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
# Get and decode the output
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
print(tokenizer.decode(output_ids, skip_special_tokens=True))
with open('HuggingFaceTB_SmolLM3-3B_4.txt', 'w', encoding='utf-8') as f:
f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_4.txt')
except Exception as e:
import os
from slack_sdk import WebClient
client = WebClient(token=os.environ['SLACK_TOKEN'])
client.chat_postMessage(
channel='#hub-model-metadata-snippets-sprint',
text='Problem in <https://huggingface.co/datasets/model-metadata/code_execution_files/blob/main/HuggingFaceTB_SmolLM3-3B_4.txt|HuggingFaceTB_SmolLM3-3B_4.txt>',
)
with open('HuggingFaceTB_SmolLM3-3B_4.txt', 'a', encoding='utf-8') as f:
import traceback
f.write('''```CODE:
# prepare the model input
prompt = "Give me a brief explanation of gravity in simple terms."
messages_think = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages_think,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate the output
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
# Get and decode the output
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
print(tokenizer.decode(output_ids, skip_special_tokens=True))
```
ERROR:
''')
traceback.print_exc(file=f)
finally:
from huggingface_hub import upload_file
upload_file(
path_or_fileobj='HuggingFaceTB_SmolLM3-3B_4.txt',
repo_id='model-metadata/code_execution_files',
path_in_repo='HuggingFaceTB_SmolLM3-3B_4.txt',
repo_type='dataset',
)
|