File size: 1,613 Bytes
0baf360 4312796 0baf360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "numpy",
# "einops",
# "pandas",
# "protobuf",
# "torch",
# "sentencepiece",
# "torchvision",
# "transformers",
# "timm",
# "diffusers",
# "sentence-transformers",
# "accelerate",
# "peft",
# "slack-sdk",
# ]
# ///
try:
# Load model directly
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("BAAI/Emu3.5-Image", torch_dtype="auto")
with open('BAAI_Emu3.5-Image_0.txt', 'w', encoding='utf-8') as f:
f.write('Everything was good in BAAI_Emu3.5-Image_0.txt')
except Exception as e:
import os
from slack_sdk import WebClient
client = WebClient(token=os.environ['SLACK_TOKEN'])
client.chat_postMessage(
channel='#hub-model-metadata-snippets-sprint',
text='Problem in <https://huggingface.co/datasets/model-metadata/code_execution_files/blob/main/BAAI_Emu3.5-Image_0.txt|BAAI_Emu3.5-Image_0.txt>',
)
with open('BAAI_Emu3.5-Image_0.txt', 'a', encoding='utf-8') as f:
import traceback
f.write('''```CODE:
# Load model directly
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("BAAI/Emu3.5-Image", torch_dtype="auto")
```
ERROR:
''')
traceback.print_exc(file=f)
finally:
from huggingface_hub import upload_file
upload_file(
path_or_fileobj='BAAI_Emu3.5-Image_0.txt',
repo_id='model-metadata/code_execution_files',
path_in_repo='BAAI_Emu3.5-Image_0.txt',
repo_type='dataset',
)
|