File size: 2,013 Bytes
3fad017
 
 
 
 
 
e5d2100
 
3fad017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5d2100
3fad017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# /// script
# requires-python = ">=3.12"
# dependencies = [
#     "torch",
#     "torchvision",
#     "transformers",
#     "diffusers",
#     "sentence-transformers",
#     "accelerate",
#     "peft",
#     "slack-sdk",
# ]
# ///

try:
    from sentence_transformers import SentenceTransformer
    
    model = SentenceTransformer("Qwen/Qwen3-Embedding-0.6B")
    
    sentences = [
        "The weather is lovely today.",
        "It's so sunny outside!",
        "He drove to the stadium."
    ]
    embeddings = model.encode(sentences)
    
    similarities = model.similarity(embeddings, embeddings)
    print(similarities.shape)
    # [3, 3]
    with open('Qwen_Qwen3-Embedding-0.6B_0.txt', 'w', encoding='utf-8') as f:
        f.write('Everything was good in Qwen_Qwen3-Embedding-0.6B_0.txt')
except Exception as e:
    import os
    from slack_sdk import WebClient
    client = WebClient(token=os.environ['SLACK_TOKEN'])
    client.chat_postMessage(
        channel='#hub-model-metadata-snippets-sprint',
        text='Problem in <https://huggingface.co/datasets/model-metadata/code_execution_files/blob/main/Qwen_Qwen3-Embedding-0.6B_0.txt|Qwen_Qwen3-Embedding-0.6B_0.txt>',
    )

    with open('Qwen_Qwen3-Embedding-0.6B_0.txt', 'a', encoding='utf-8') as f:
        import traceback
        f.write('''```CODE: 
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Qwen/Qwen3-Embedding-0.6B")

sentences = [
    "The weather is lovely today.",
    "It's so sunny outside!",
    "He drove to the stadium."
]
embeddings = model.encode(sentences)

similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

ERROR: 
''')
        traceback.print_exc(file=f)
    
finally:
    from huggingface_hub import upload_file
    upload_file(
        path_or_fileobj='Qwen_Qwen3-Embedding-0.6B_0.txt',
        repo_id='model-metadata/code_execution_files',
        path_in_repo='Qwen_Qwen3-Embedding-0.6B_0.txt',
        repo_type='dataset',
    )