File size: 2,483 Bytes
			
			| c8f92de 93b32d3 c8f92de 94c9945 c8f92de a26120f 94c9945 93b32d3 94c9945 a26120f 94c9945 b0b7f18 94c9945 c8f92de | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | # /// script
# requires-python = ">=3.12"
# dependencies = [
#     "torch",
#     "torchvision",
#     "transformers",
#     "accelerate",
#     "peft",
#     "slack-sdk",
# ]
# ///
try:
    # Load model directly
    from transformers import AutoTokenizer, AutoModelForCausalLM
    
    tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Coder-30B-A3B-Instruct")
    model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Coder-30B-A3B-Instruct")
    messages = [
        {"role": "user", "content": "Who are you?"},
    ]
    inputs = tokenizer.apply_chat_template(
    	messages,
    	add_generation_prompt=True,
    	tokenize=True,
    	return_dict=True,
    	return_tensors="pt",
    ).to(model.device)
    
    outputs = model.generate(**inputs, max_new_tokens=40)
    print(tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:]))
    with open('Qwen_Qwen3-Coder-30B-A3B-Instruct_1.txt', 'w', encoding='utf-8') as f:
        f.write('Everything was good in Qwen_Qwen3-Coder-30B-A3B-Instruct_1.txt')
except Exception as e:
    import os
    from slack_sdk import WebClient
    client = WebClient(token=os.environ['SLACK_TOKEN'])
    client.chat_postMessage(
        channel='#exp-slack-alerts',
        text='Problem in <https://huggingface.co/datasets/model-metadata/code_execution_files/blob/main/Qwen_Qwen3-Coder-30B-A3B-Instruct_1.txt|Qwen_Qwen3-Coder-30B-A3B-Instruct_1.txt>',
    )
    with open('Qwen_Qwen3-Coder-30B-A3B-Instruct_1.txt', 'a', encoding='utf-8') as f:
        import traceback
        f.write('''```CODE: 
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Coder-30B-A3B-Instruct")
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Coder-30B-A3B-Instruct")
messages = [
    {"role": "user", "content": "Who are you?"},
]
inputs = tokenizer.apply_chat_template(
	messages,
	add_generation_prompt=True,
	tokenize=True,
	return_dict=True,
	return_tensors="pt",
).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=40)
print(tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:]))
```
ERROR: 
''')
        traceback.print_exc(file=f)
    
finally:
    from huggingface_hub import upload_file
    upload_file(
        path_or_fileobj='Qwen_Qwen3-Coder-30B-A3B-Instruct_1.txt',
        repo_id='model-metadata/code_execution_files',
        path_in_repo='Qwen_Qwen3-Coder-30B-A3B-Instruct_1.txt',
        repo_type='dataset',
    )
 |