code_python_files / ibm-granite_granite-docling-258M_1.py
ariG23498's picture
ariG23498 HF Staff
Upload ibm-granite_granite-docling-258M_1.py with huggingface_hub
bcb147e verified
raw
history blame
1.7 kB
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "torch",
# "torchvision",
# "transformers",
# "accelerate",
# "peft",
# ]
# ///
try:
# Load model directly
from transformers import AutoProcessor, AutoModelForVision2Seq
processor = AutoProcessor.from_pretrained("ibm-granite/granite-docling-258M")
model = AutoModelForVision2Seq.from_pretrained("ibm-granite/granite-docling-258M")
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"},
{"type": "text", "text": "What animal is on the candy?"}
]
},
]
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=40)
print(processor.decode(outputs[0][inputs["input_ids"].shape[-1]:]))
with open('ibm-granite_granite-docling-258M_1.txt', 'w', encoding='utf-8') as f:
f.write('Everything was good in ibm-granite_granite-docling-258M_1.txt')
except Exception as e:
with open('ibm-granite_granite-docling-258M_1.txt', 'w', encoding='utf-8') as f:
import traceback
traceback.print_exc(file=f)
finally:
from huggingface_hub import upload_file
upload_file(
path_or_fileobj='ibm-granite_granite-docling-258M_1.txt',
repo_id='model-metadata/code_execution_files',
path_in_repo='ibm-granite_granite-docling-258M_1.txt',
repo_type='dataset',
)