|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model_name = "HuggingFaceTB/SmolLM3-3B" |
|
|
device = "cuda" |
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_name, |
|
|
).to(device) |
|
|
with open('HuggingFaceTB_SmolLM3-3B_3.txt', 'w', encoding='utf-8') as f: |
|
|
f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_3.txt') |
|
|
except Exception as e: |
|
|
import os |
|
|
from slack_sdk import WebClient |
|
|
client = WebClient(token=os.environ['SLACK_TOKEN']) |
|
|
client.chat_postMessage( |
|
|
channel='#hub-model-metadata-snippets-sprint', |
|
|
text='Problem in <https://huggingface.co/datasets/model-metadata/code_execution_files/blob/main/HuggingFaceTB_SmolLM3-3B_3.txt|HuggingFaceTB_SmolLM3-3B_3.txt>', |
|
|
) |
|
|
|
|
|
with open('HuggingFaceTB_SmolLM3-3B_3.txt', 'a', encoding='utf-8') as f: |
|
|
import traceback |
|
|
f.write('''```CODE: |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model_name = "HuggingFaceTB/SmolLM3-3B" |
|
|
device = "cuda" # for GPU usage or "cpu" for CPU usage |
|
|
|
|
|
# load the tokenizer and the model |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_name, |
|
|
).to(device) |
|
|
``` |
|
|
|
|
|
ERROR: |
|
|
''') |
|
|
traceback.print_exc(file=f) |
|
|
|
|
|
finally: |
|
|
from huggingface_hub import upload_file |
|
|
upload_file( |
|
|
path_or_fileobj='HuggingFaceTB_SmolLM3-3B_3.txt', |
|
|
repo_id='model-metadata/code_execution_files', |
|
|
path_in_repo='HuggingFaceTB_SmolLM3-3B_3.txt', |
|
|
repo_type='dataset', |
|
|
) |
|
|
|