# /// script # requires-python = ">=3.12" # dependencies = [ # "torch", # "torchvision", # "transformers", # "diffusers", # "sentence-transformers", # "accelerate", # "peft", # "slack-sdk", # ] # /// try: from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "HuggingFaceTB/SmolLM3-3B" device = "cuda" # for GPU usage or "cpu" for CPU usage # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, ).to(device) with open('HuggingFaceTB_SmolLM3-3B_3.txt', 'w', encoding='utf-8') as f: f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_3.txt') except Exception as e: import os from slack_sdk import WebClient client = WebClient(token=os.environ['SLACK_TOKEN']) client.chat_postMessage( channel='#hub-model-metadata-snippets-sprint', text='Problem in ', ) with open('HuggingFaceTB_SmolLM3-3B_3.txt', 'a', encoding='utf-8') as f: import traceback f.write('''```CODE: from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "HuggingFaceTB/SmolLM3-3B" device = "cuda" # for GPU usage or "cpu" for CPU usage # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, ).to(device) ``` ERROR: ''') traceback.print_exc(file=f) finally: from huggingface_hub import upload_file upload_file( path_or_fileobj='HuggingFaceTB_SmolLM3-3B_3.txt', repo_id='model-metadata/code_execution_files', path_in_repo='HuggingFaceTB_SmolLM3-3B_3.txt', repo_type='dataset', )