# /// script # requires-python = ">=3.12" # dependencies = [ # "torch", # "torchvision", # "transformers", # "diffusers", # "sentence-transformers", # "accelerate", # "peft", # "slack-sdk", # ] # /// try: prompt = "Give me a brief explanation of gravity in simple terms." messages = [ {"role": "system", "content": "/no_think"}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate the output generated_ids = model.generate(**model_inputs, max_new_tokens=32768) # Get and decode the output output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :] print(tokenizer.decode(output_ids, skip_special_tokens=True)) with open('HuggingFaceTB_SmolLM3-3B_5.txt', 'w', encoding='utf-8') as f: f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_5.txt') except Exception as e: import os from slack_sdk import WebClient client = WebClient(token=os.environ['SLACK_TOKEN']) client.chat_postMessage( channel='#hub-model-metadata-snippets-sprint', text='Problem in ', ) with open('HuggingFaceTB_SmolLM3-3B_5.txt', 'a', encoding='utf-8') as f: import traceback f.write('''```CODE: prompt = "Give me a brief explanation of gravity in simple terms." messages = [ {"role": "system", "content": "/no_think"}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate the output generated_ids = model.generate(**model_inputs, max_new_tokens=32768) # Get and decode the output output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :] print(tokenizer.decode(output_ids, skip_special_tokens=True)) ``` ERROR: ''') traceback.print_exc(file=f) finally: from huggingface_hub import upload_file upload_file( path_or_fileobj='HuggingFaceTB_SmolLM3-3B_5.txt', repo_id='model-metadata/code_execution_files', path_in_repo='HuggingFaceTB_SmolLM3-3B_5.txt', repo_type='dataset', )