Datasets:
updated to datasets 4.*
Browse files- README.md +26 -15
- compas-scores-two-years-violent.csv +0 -0
- compas.py +0 -349
- priors-prediction-no-race/train.csv +0 -0
- priors-prediction/train.csv +0 -0
- two-years-recidividity-no-race/train.csv +0 -0
- two-years-recidividity/train.csv +0 -0
README.md
CHANGED
|
@@ -1,24 +1,35 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
tags:
|
| 5 |
-
- compas
|
| 6 |
- tabular_classification
|
| 7 |
- binary_classification
|
| 8 |
-
-
|
| 9 |
-
pretty_name: Compas
|
| 10 |
-
size_categories:
|
| 11 |
-
- 1K<n<10K
|
| 12 |
task_categories:
|
| 13 |
- tabular-classification
|
| 14 |
-
configs:
|
| 15 |
-
- encoding
|
| 16 |
-
- two-years-recidividity
|
| 17 |
-
- two-years-recidividity-no-race
|
| 18 |
-
- priors-prediction
|
| 19 |
-
- priors-prediction-no-race
|
| 20 |
-
- race
|
| 21 |
-
license: cc
|
| 22 |
---
|
| 23 |
# Compas
|
| 24 |
The [Compas dataset](https://github.com/propublica/compas-analysis) for recidivism prediction.
|
|
|
|
| 1 |
---
|
| 2 |
+
configs:
|
| 3 |
+
- config_name: two-years-recidividity
|
| 4 |
+
data_files:
|
| 5 |
+
- path: two-years-recidividity/train.csv
|
| 6 |
+
split: train
|
| 7 |
+
default: true
|
| 8 |
+
- config_name: two-years-recidividity-no-race
|
| 9 |
+
data_files:
|
| 10 |
+
- path: two-years-recidividity-no-race/train.csv
|
| 11 |
+
split: train
|
| 12 |
+
default: false
|
| 13 |
+
- config_name: priors-prediction
|
| 14 |
+
data_files:
|
| 15 |
+
- path: priors-prediction/train.csv
|
| 16 |
+
split: train
|
| 17 |
+
default: false
|
| 18 |
+
- config_name: priors-prediction-no-race
|
| 19 |
+
data_files:
|
| 20 |
+
- path: priors-prediction-no-race/train.csv
|
| 21 |
+
split: train
|
| 22 |
+
default: false
|
| 23 |
+
language: en
|
| 24 |
+
license: cc
|
| 25 |
+
pretty_name: Compas
|
| 26 |
+
size_categories: 1M<n<10M
|
| 27 |
tags:
|
|
|
|
| 28 |
- tabular_classification
|
| 29 |
- binary_classification
|
| 30 |
+
- multiclass_classification
|
|
|
|
|
|
|
|
|
|
| 31 |
task_categories:
|
| 32 |
- tabular-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
---
|
| 34 |
# Compas
|
| 35 |
The [Compas dataset](https://github.com/propublica/compas-analysis) for recidivism prediction.
|
compas-scores-two-years-violent.csv
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
compas.py
DELETED
|
@@ -1,349 +0,0 @@
|
|
| 1 |
-
"""Compas Dataset"""
|
| 2 |
-
|
| 3 |
-
from typing import List
|
| 4 |
-
from functools import partial
|
| 5 |
-
import datetime
|
| 6 |
-
|
| 7 |
-
import datasets
|
| 8 |
-
|
| 9 |
-
import pandas
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
VERSION = datasets.Version("1.0.0")
|
| 13 |
-
_ORIGINAL_FEATURE_NAMES = [
|
| 14 |
-
"id",
|
| 15 |
-
"name",
|
| 16 |
-
"first",
|
| 17 |
-
"last",
|
| 18 |
-
"compas_screening_date",
|
| 19 |
-
"sex",
|
| 20 |
-
"dob",
|
| 21 |
-
"age",
|
| 22 |
-
"age_cat",
|
| 23 |
-
"race",
|
| 24 |
-
"juv_fel_count",
|
| 25 |
-
"decile_score",
|
| 26 |
-
"juv_misd_count",
|
| 27 |
-
"juv_other_count",
|
| 28 |
-
"priors_count",
|
| 29 |
-
"days_b_screening_arrest",
|
| 30 |
-
"c_jail_in",
|
| 31 |
-
"c_jail_out",
|
| 32 |
-
"c_case_number",
|
| 33 |
-
"c_offense_date",
|
| 34 |
-
"c_arrest_date",
|
| 35 |
-
"c_days_from_compas",
|
| 36 |
-
"c_charge_degree",
|
| 37 |
-
"c_charge_desc",
|
| 38 |
-
"is_recid",
|
| 39 |
-
"r_case_number",
|
| 40 |
-
"r_charge_degree",
|
| 41 |
-
"r_days_from_arrest",
|
| 42 |
-
"r_offense_date",
|
| 43 |
-
"r_charge_desc",
|
| 44 |
-
"r_jail_in",
|
| 45 |
-
"r_jail_out",
|
| 46 |
-
"violent_recid",
|
| 47 |
-
"is_violent_recid",
|
| 48 |
-
"vr_case_number",
|
| 49 |
-
"vr_charge_degree",
|
| 50 |
-
"vr_offense_date",
|
| 51 |
-
"vr_charge_desc",
|
| 52 |
-
"type_of_assessment",
|
| 53 |
-
"decile_score",
|
| 54 |
-
"score_text",
|
| 55 |
-
"screening_date",
|
| 56 |
-
"v_type_of_assessment",
|
| 57 |
-
"v_decile_score",
|
| 58 |
-
"v_score_text",
|
| 59 |
-
"v_screening_date",
|
| 60 |
-
"in_custody",
|
| 61 |
-
"out_custody",
|
| 62 |
-
"priors_count",
|
| 63 |
-
"start",
|
| 64 |
-
"end",
|
| 65 |
-
"event",
|
| 66 |
-
"two_year_recid",
|
| 67 |
-
"two_year_recid"
|
| 68 |
-
]
|
| 69 |
-
_BASE_FEATURE_NAMES = [
|
| 70 |
-
"is_male",
|
| 71 |
-
"age",
|
| 72 |
-
"race",
|
| 73 |
-
"number_of_juvenile_fellonies",
|
| 74 |
-
"decile_score",
|
| 75 |
-
"number_of_juvenile_misdemeanors",
|
| 76 |
-
"number_of_other_juvenile_offenses",
|
| 77 |
-
"number_of_prior_offenses",
|
| 78 |
-
"days_before_screening_arrest",
|
| 79 |
-
"is_recidivous",
|
| 80 |
-
"days_in_custody",
|
| 81 |
-
"is_violent_recidivous",
|
| 82 |
-
"violence_decile_score",
|
| 83 |
-
"two_year_recidivous",
|
| 84 |
-
]
|
| 85 |
-
_ENCODING_DICS = {
|
| 86 |
-
"is_male": {
|
| 87 |
-
"Male": 1,
|
| 88 |
-
"Female": 0
|
| 89 |
-
},
|
| 90 |
-
"race": {
|
| 91 |
-
"Caucasian": 0,
|
| 92 |
-
"African-American": 1,
|
| 93 |
-
"Hispanic": 2,
|
| 94 |
-
"Asian": 3,
|
| 95 |
-
"Other": 4,
|
| 96 |
-
"Native American": 5,
|
| 97 |
-
}
|
| 98 |
-
}
|
| 99 |
-
|
| 100 |
-
DESCRIPTION = "COMPAS dataset for recidivism prediction."
|
| 101 |
-
_HOMEPAGE = "https://github.com/propublica/compas-analysis"
|
| 102 |
-
_URLS = ("https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv")
|
| 103 |
-
_CITATION = """"""
|
| 104 |
-
|
| 105 |
-
# Dataset info
|
| 106 |
-
urls_per_split = {
|
| 107 |
-
"train": "https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv",
|
| 108 |
-
}
|
| 109 |
-
features_types_per_config = {
|
| 110 |
-
"encoding": {
|
| 111 |
-
"feature": datasets.Value("string"),
|
| 112 |
-
"original_value": datasets.Value("string"),
|
| 113 |
-
"encoded_value": datasets.Value("int8"),
|
| 114 |
-
},
|
| 115 |
-
|
| 116 |
-
"two-years-recidividity": {
|
| 117 |
-
"is_male": datasets.Value("bool"),
|
| 118 |
-
"age": datasets.Value("int64"),
|
| 119 |
-
"race": datasets.Value("string"),
|
| 120 |
-
"number_of_juvenile_fellonies": datasets.Value("int64"),
|
| 121 |
-
"decile_score": datasets.Value("int64"),
|
| 122 |
-
"number_of_juvenile_misdemeanors": datasets.Value("int64"),
|
| 123 |
-
"number_of_other_juvenile_offenses": datasets.Value("int64"),
|
| 124 |
-
"number_of_prior_offenses": datasets.Value("int64"),
|
| 125 |
-
"days_before_screening_arrest": datasets.Value("int64"),
|
| 126 |
-
"is_recidivous": datasets.Value("bool"),
|
| 127 |
-
"days_in_custody": datasets.Value("int64"),
|
| 128 |
-
"is_violent_recidivous": datasets.Value("bool"),
|
| 129 |
-
"violence_decile_score": datasets.Value("int64"),
|
| 130 |
-
"two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
| 131 |
-
},
|
| 132 |
-
|
| 133 |
-
"two-years-recidividity-no-race": {
|
| 134 |
-
"is_male": datasets.Value("bool"),
|
| 135 |
-
"age": datasets.Value("int64"),
|
| 136 |
-
"number_of_juvenile_fellonies": datasets.Value("int64"),
|
| 137 |
-
"decile_score": datasets.Value("int64"),
|
| 138 |
-
"number_of_juvenile_misdemeanors": datasets.Value("int64"),
|
| 139 |
-
"number_of_other_juvenile_offenses": datasets.Value("int64"),
|
| 140 |
-
"number_of_prior_offenses": datasets.Value("int64"),
|
| 141 |
-
"days_before_screening_arrest": datasets.Value("int64"),
|
| 142 |
-
"is_recidivous": datasets.Value("bool"),
|
| 143 |
-
"days_in_custody": datasets.Value("int64"),
|
| 144 |
-
"is_violent_recidivous": datasets.Value("bool"),
|
| 145 |
-
"violence_decile_score": datasets.Value("int64"),
|
| 146 |
-
"two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
| 147 |
-
},
|
| 148 |
-
|
| 149 |
-
"priors-prediction": {
|
| 150 |
-
"is_male": datasets.Value("bool"),
|
| 151 |
-
"age": datasets.Value("int64"),
|
| 152 |
-
"race": datasets.Value("string"),
|
| 153 |
-
"number_of_juvenile_fellonies": datasets.Value("int64"),
|
| 154 |
-
"decile_score": datasets.Value("int64"),
|
| 155 |
-
"number_of_juvenile_misdemeanors": datasets.Value("int64"),
|
| 156 |
-
"number_of_other_juvenile_offenses": datasets.Value("int64"),
|
| 157 |
-
"days_before_screening_arrest": datasets.Value("int64"),
|
| 158 |
-
"is_recidivous": datasets.Value("bool"),
|
| 159 |
-
"days_in_custody": datasets.Value("int64"),
|
| 160 |
-
"is_violent_recidivous": datasets.Value("bool"),
|
| 161 |
-
"violence_decile_score": datasets.Value("int64"),
|
| 162 |
-
"two_year_recidivous": datasets.Value("int64"),
|
| 163 |
-
"number_of_prior_offenses": datasets.Value("int64")
|
| 164 |
-
},
|
| 165 |
-
|
| 166 |
-
"priors-prediction-no-race": {
|
| 167 |
-
"is_male": datasets.Value("bool"),
|
| 168 |
-
"age": datasets.Value("int64"),
|
| 169 |
-
"number_of_juvenile_fellonies": datasets.Value("int64"),
|
| 170 |
-
"decile_score": datasets.Value("int64"),
|
| 171 |
-
"number_of_juvenile_misdemeanors": datasets.Value("int64"),
|
| 172 |
-
"number_of_other_juvenile_offenses": datasets.Value("int64"),
|
| 173 |
-
"days_before_screening_arrest": datasets.Value("int64"),
|
| 174 |
-
"is_recidivous": datasets.Value("bool"),
|
| 175 |
-
"days_in_custody": datasets.Value("int64"),
|
| 176 |
-
"is_violent_recidivous": datasets.Value("bool"),
|
| 177 |
-
"violence_decile_score": datasets.Value("int64"),
|
| 178 |
-
"two_year_recidivous": datasets.Value("int64"),
|
| 179 |
-
"number_of_prior_offenses": datasets.Value("int64"),
|
| 180 |
-
},
|
| 181 |
-
|
| 182 |
-
"race": {
|
| 183 |
-
"is_male": datasets.Value("bool"),
|
| 184 |
-
"age": datasets.Value("int64"),
|
| 185 |
-
"number_of_juvenile_fellonies": datasets.Value("int64"),
|
| 186 |
-
"decile_score": datasets.Value("int64"),
|
| 187 |
-
"number_of_juvenile_misdemeanors": datasets.Value("int64"),
|
| 188 |
-
"number_of_other_juvenile_offenses": datasets.Value("int64"),
|
| 189 |
-
"days_before_screening_arrest": datasets.Value("int64"),
|
| 190 |
-
"is_recidivous": datasets.Value("bool"),
|
| 191 |
-
"days_in_custody": datasets.Value("int64"),
|
| 192 |
-
"is_violent_recidivous": datasets.Value("bool"),
|
| 193 |
-
"violence_decile_score": datasets.Value("int64"),
|
| 194 |
-
"two_year_recidivous": datasets.Value("int64"),
|
| 195 |
-
"number_of_prior_offenses": datasets.Value("int64"),
|
| 196 |
-
"race": datasets.ClassLabel(num_classes=6, names=("Caucasian", "African-American",
|
| 197 |
-
"Hispanic", "Asian", "Other", "Native American")),
|
| 198 |
-
}
|
| 199 |
-
}
|
| 200 |
-
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
class CompasConfig(datasets.BuilderConfig):
|
| 204 |
-
def __init__(self, **kwargs):
|
| 205 |
-
super(CompasConfig, self).__init__(version=VERSION, **kwargs)
|
| 206 |
-
self.features = features_per_config[kwargs["name"]]
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
class Compas(datasets.GeneratorBasedBuilder):
|
| 210 |
-
# dataset versions
|
| 211 |
-
DEFAULT_CONFIG = "two-years-recidividity"
|
| 212 |
-
BUILDER_CONFIGS = [
|
| 213 |
-
CompasConfig(name="race",
|
| 214 |
-
description="Multiclass classification, predict `race` out of other features."),
|
| 215 |
-
CompasConfig(name="two-years-recidividity",
|
| 216 |
-
description="Compas binary classification for two-year recidividity."),
|
| 217 |
-
CompasConfig(name="two-years-recidividity-no-race",
|
| 218 |
-
description="Compas binary classification for two-year recidividity. Race excluded from features."),
|
| 219 |
-
CompasConfig(name="priors-prediction",
|
| 220 |
-
description="Compas regression task for estimating number of prior offenses of defendant."),
|
| 221 |
-
CompasConfig(name="priors-prediction-no-race",
|
| 222 |
-
description="Compas regression task for estimating number of prior offenses of defendant. Race excluded from features."),
|
| 223 |
-
CompasConfig(name="encoding",
|
| 224 |
-
description="Encoding dictionaries for discrete labels."),
|
| 225 |
-
]
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
def _info(self):
|
| 229 |
-
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
| 230 |
-
features=features_per_config[self.config.name])
|
| 231 |
-
|
| 232 |
-
return info
|
| 233 |
-
|
| 234 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 235 |
-
downloads = dl_manager.download_and_extract(urls_per_split)
|
| 236 |
-
|
| 237 |
-
return [
|
| 238 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
| 239 |
-
]
|
| 240 |
-
|
| 241 |
-
def _generate_examples(self, filepath: str):
|
| 242 |
-
if self.config.name == "encoding":
|
| 243 |
-
data = self.encoding_dics()
|
| 244 |
-
else:
|
| 245 |
-
data = pandas.read_csv(filepath)
|
| 246 |
-
data = self.preprocess(data, config=self.config.name)
|
| 247 |
-
|
| 248 |
-
for row_id, row in data.iterrows():
|
| 249 |
-
data_row = dict(row)
|
| 250 |
-
|
| 251 |
-
yield row_id, data_row
|
| 252 |
-
|
| 253 |
-
def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
|
| 254 |
-
data.drop("id", axis="columns", inplace=True)
|
| 255 |
-
data.drop("name", axis="columns", inplace=True)
|
| 256 |
-
data.drop("first", axis="columns", inplace=True)
|
| 257 |
-
data.drop("last", axis="columns", inplace=True)
|
| 258 |
-
data.drop("dob", axis="columns", inplace=True)
|
| 259 |
-
data.drop("age_cat", axis="columns", inplace=True)
|
| 260 |
-
data.drop("c_offense_date", axis="columns", inplace=True)
|
| 261 |
-
data.drop("c_jail_in", axis="columns", inplace=True)
|
| 262 |
-
data.drop("c_jail_out", axis="columns", inplace=True)
|
| 263 |
-
data.drop("c_arrest_date", axis="columns", inplace=True)
|
| 264 |
-
data.drop("c_charge_degree", axis="columns", inplace=True)
|
| 265 |
-
data.drop("c_charge_desc", axis="columns", inplace=True)
|
| 266 |
-
data.drop("r_case_number", axis="columns", inplace=True)
|
| 267 |
-
data.drop("r_charge_degree", axis="columns", inplace=True)
|
| 268 |
-
data.drop("r_offense_date", axis="columns", inplace=True)
|
| 269 |
-
data.drop("r_charge_desc", axis="columns", inplace=True)
|
| 270 |
-
data.drop("violent_recid", axis="columns", inplace=True)
|
| 271 |
-
data.drop("vr_case_number", axis="columns", inplace=True)
|
| 272 |
-
data.drop("vr_charge_degree", axis="columns", inplace=True)
|
| 273 |
-
data.drop("vr_offense_date", axis="columns", inplace=True)
|
| 274 |
-
data.drop("vr_charge_desc", axis="columns", inplace=True)
|
| 275 |
-
data.drop("type_of_assessment", axis="columns", inplace=True)
|
| 276 |
-
data.drop("score_text", axis="columns", inplace=True)
|
| 277 |
-
data.drop("v_score_text", axis="columns", inplace=True)
|
| 278 |
-
data.drop("v_screening_date", axis="columns", inplace=True)
|
| 279 |
-
data.drop("screening_date", axis="columns", inplace=True)
|
| 280 |
-
data.drop("start", axis="columns", inplace=True)
|
| 281 |
-
data.drop("end", axis="columns", inplace=True)
|
| 282 |
-
data.drop("event", axis="columns", inplace=True)
|
| 283 |
-
data.drop("two_year_recid.1", axis="columns", inplace=True)
|
| 284 |
-
data.drop("r_jail_in", axis="columns", inplace=True)
|
| 285 |
-
data.drop("r_jail_out", axis="columns", inplace=True)
|
| 286 |
-
data.drop("v_type_of_assessment", axis="columns", inplace=True)
|
| 287 |
-
data.drop("compas_screening_date", axis="columns", inplace=True)
|
| 288 |
-
data.drop("decile_score.1", axis="columns", inplace=True)
|
| 289 |
-
data.drop("priors_count.1", axis="columns", inplace=True)
|
| 290 |
-
data.drop("c_case_number", axis="columns", inplace=True)
|
| 291 |
-
data.drop("c_days_from_compas", axis="columns", inplace=True)
|
| 292 |
-
data.drop("r_days_from_arrest", axis="columns", inplace=True)
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
# handle nan values
|
| 296 |
-
data.loc[data.days_b_screening_arrest.isna(), "days_b_screening_arrest"] = -1
|
| 297 |
-
data["days_b_screening_arrest"] = data.days_b_screening_arrest.astype(int)
|
| 298 |
-
|
| 299 |
-
# transform columns into intervals
|
| 300 |
-
data = data[(~data.in_custody.isna()) & (~data.out_custody.isna())]
|
| 301 |
-
in_dates = data.in_custody.apply(datetime.date.fromisoformat)
|
| 302 |
-
out_dates = data.out_custody.apply(datetime.date.fromisoformat)
|
| 303 |
-
days_in_custody = [delta.days for delta in out_dates - in_dates]
|
| 304 |
-
data.loc[:, "days_in_custody"] = days_in_custody
|
| 305 |
-
data.drop("in_custody", axis="columns", inplace=True)
|
| 306 |
-
data.drop("out_custody", axis="columns", inplace=True)
|
| 307 |
-
|
| 308 |
-
data = data[["sex",
|
| 309 |
-
"age",
|
| 310 |
-
"race",
|
| 311 |
-
"juv_fel_count",
|
| 312 |
-
"decile_score",
|
| 313 |
-
"juv_misd_count",
|
| 314 |
-
"juv_other_count",
|
| 315 |
-
"priors_count",
|
| 316 |
-
"days_b_screening_arrest",
|
| 317 |
-
"is_recid",
|
| 318 |
-
"days_in_custody",
|
| 319 |
-
"is_violent_recid",
|
| 320 |
-
"v_decile_score",
|
| 321 |
-
"two_year_recid"]]
|
| 322 |
-
|
| 323 |
-
data.columns = _BASE_FEATURE_NAMES
|
| 324 |
-
|
| 325 |
-
for feature in _ENCODING_DICS:
|
| 326 |
-
if feature == "race":
|
| 327 |
-
if config != "race":
|
| 328 |
-
continue
|
| 329 |
-
encoding_function = partial(self.encode, feature)
|
| 330 |
-
data.loc[:, feature] = data[feature].apply(encoding_function)
|
| 331 |
-
data.loc[:, "is_recidivous"] = data["is_recidivous"].apply(bool)
|
| 332 |
-
data.loc[:, "is_violent_recidivous"] = data["is_violent_recidivous"].apply(bool)
|
| 333 |
-
data = data.astype({"is_recidivous": "bool", "is_violent_recidivous": "bool"})
|
| 334 |
-
|
| 335 |
-
return data[list(features_types_per_config[config].keys())]
|
| 336 |
-
|
| 337 |
-
def encode(self, feature, value):
|
| 338 |
-
if feature in _ENCODING_DICS:
|
| 339 |
-
return _ENCODING_DICS[feature][value]
|
| 340 |
-
raise ValueError(f"Unknown feature: {feature}")
|
| 341 |
-
|
| 342 |
-
def encoding_dics(self):
|
| 343 |
-
data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()])
|
| 344 |
-
for feature, d in _ENCODING_DICS.items()]
|
| 345 |
-
data = pandas.concat(data, axis="rows").reset_index()
|
| 346 |
-
data.drop("index", axis="columns", inplace=True)
|
| 347 |
-
data.columns = ["feature", "original_value", "encoded_value"]
|
| 348 |
-
|
| 349 |
-
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
priors-prediction-no-race/train.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
priors-prediction/train.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
two-years-recidividity-no-race/train.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
two-years-recidividity/train.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|