mstz commited on
Commit
89438aa
·
1 Parent(s): 5e0413c

updated to datasets 4.*

Browse files
README.md CHANGED
@@ -1,24 +1,35 @@
1
  ---
2
- language:
3
- - en
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  tags:
5
- - compas
6
  - tabular_classification
7
  - binary_classification
8
- - UCI
9
- pretty_name: Compas
10
- size_categories:
11
- - 1K<n<10K
12
  task_categories:
13
  - tabular-classification
14
- configs:
15
- - encoding
16
- - two-years-recidividity
17
- - two-years-recidividity-no-race
18
- - priors-prediction
19
- - priors-prediction-no-race
20
- - race
21
- license: cc
22
  ---
23
  # Compas
24
  The [Compas dataset](https://github.com/propublica/compas-analysis) for recidivism prediction.
 
1
  ---
2
+ configs:
3
+ - config_name: two-years-recidividity
4
+ data_files:
5
+ - path: two-years-recidividity/train.csv
6
+ split: train
7
+ default: true
8
+ - config_name: two-years-recidividity-no-race
9
+ data_files:
10
+ - path: two-years-recidividity-no-race/train.csv
11
+ split: train
12
+ default: false
13
+ - config_name: priors-prediction
14
+ data_files:
15
+ - path: priors-prediction/train.csv
16
+ split: train
17
+ default: false
18
+ - config_name: priors-prediction-no-race
19
+ data_files:
20
+ - path: priors-prediction-no-race/train.csv
21
+ split: train
22
+ default: false
23
+ language: en
24
+ license: cc
25
+ pretty_name: Compas
26
+ size_categories: 1M<n<10M
27
  tags:
 
28
  - tabular_classification
29
  - binary_classification
30
+ - multiclass_classification
 
 
 
31
  task_categories:
32
  - tabular-classification
 
 
 
 
 
 
 
 
33
  ---
34
  # Compas
35
  The [Compas dataset](https://github.com/propublica/compas-analysis) for recidivism prediction.
compas-scores-two-years-violent.csv DELETED
The diff for this file is too large to render. See raw diff
 
compas.py DELETED
@@ -1,349 +0,0 @@
1
- """Compas Dataset"""
2
-
3
- from typing import List
4
- from functools import partial
5
- import datetime
6
-
7
- import datasets
8
-
9
- import pandas
10
-
11
-
12
- VERSION = datasets.Version("1.0.0")
13
- _ORIGINAL_FEATURE_NAMES = [
14
- "id",
15
- "name",
16
- "first",
17
- "last",
18
- "compas_screening_date",
19
- "sex",
20
- "dob",
21
- "age",
22
- "age_cat",
23
- "race",
24
- "juv_fel_count",
25
- "decile_score",
26
- "juv_misd_count",
27
- "juv_other_count",
28
- "priors_count",
29
- "days_b_screening_arrest",
30
- "c_jail_in",
31
- "c_jail_out",
32
- "c_case_number",
33
- "c_offense_date",
34
- "c_arrest_date",
35
- "c_days_from_compas",
36
- "c_charge_degree",
37
- "c_charge_desc",
38
- "is_recid",
39
- "r_case_number",
40
- "r_charge_degree",
41
- "r_days_from_arrest",
42
- "r_offense_date",
43
- "r_charge_desc",
44
- "r_jail_in",
45
- "r_jail_out",
46
- "violent_recid",
47
- "is_violent_recid",
48
- "vr_case_number",
49
- "vr_charge_degree",
50
- "vr_offense_date",
51
- "vr_charge_desc",
52
- "type_of_assessment",
53
- "decile_score",
54
- "score_text",
55
- "screening_date",
56
- "v_type_of_assessment",
57
- "v_decile_score",
58
- "v_score_text",
59
- "v_screening_date",
60
- "in_custody",
61
- "out_custody",
62
- "priors_count",
63
- "start",
64
- "end",
65
- "event",
66
- "two_year_recid",
67
- "two_year_recid"
68
- ]
69
- _BASE_FEATURE_NAMES = [
70
- "is_male",
71
- "age",
72
- "race",
73
- "number_of_juvenile_fellonies",
74
- "decile_score",
75
- "number_of_juvenile_misdemeanors",
76
- "number_of_other_juvenile_offenses",
77
- "number_of_prior_offenses",
78
- "days_before_screening_arrest",
79
- "is_recidivous",
80
- "days_in_custody",
81
- "is_violent_recidivous",
82
- "violence_decile_score",
83
- "two_year_recidivous",
84
- ]
85
- _ENCODING_DICS = {
86
- "is_male": {
87
- "Male": 1,
88
- "Female": 0
89
- },
90
- "race": {
91
- "Caucasian": 0,
92
- "African-American": 1,
93
- "Hispanic": 2,
94
- "Asian": 3,
95
- "Other": 4,
96
- "Native American": 5,
97
- }
98
- }
99
-
100
- DESCRIPTION = "COMPAS dataset for recidivism prediction."
101
- _HOMEPAGE = "https://github.com/propublica/compas-analysis"
102
- _URLS = ("https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv")
103
- _CITATION = """"""
104
-
105
- # Dataset info
106
- urls_per_split = {
107
- "train": "https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv",
108
- }
109
- features_types_per_config = {
110
- "encoding": {
111
- "feature": datasets.Value("string"),
112
- "original_value": datasets.Value("string"),
113
- "encoded_value": datasets.Value("int8"),
114
- },
115
-
116
- "two-years-recidividity": {
117
- "is_male": datasets.Value("bool"),
118
- "age": datasets.Value("int64"),
119
- "race": datasets.Value("string"),
120
- "number_of_juvenile_fellonies": datasets.Value("int64"),
121
- "decile_score": datasets.Value("int64"),
122
- "number_of_juvenile_misdemeanors": datasets.Value("int64"),
123
- "number_of_other_juvenile_offenses": datasets.Value("int64"),
124
- "number_of_prior_offenses": datasets.Value("int64"),
125
- "days_before_screening_arrest": datasets.Value("int64"),
126
- "is_recidivous": datasets.Value("bool"),
127
- "days_in_custody": datasets.Value("int64"),
128
- "is_violent_recidivous": datasets.Value("bool"),
129
- "violence_decile_score": datasets.Value("int64"),
130
- "two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
131
- },
132
-
133
- "two-years-recidividity-no-race": {
134
- "is_male": datasets.Value("bool"),
135
- "age": datasets.Value("int64"),
136
- "number_of_juvenile_fellonies": datasets.Value("int64"),
137
- "decile_score": datasets.Value("int64"),
138
- "number_of_juvenile_misdemeanors": datasets.Value("int64"),
139
- "number_of_other_juvenile_offenses": datasets.Value("int64"),
140
- "number_of_prior_offenses": datasets.Value("int64"),
141
- "days_before_screening_arrest": datasets.Value("int64"),
142
- "is_recidivous": datasets.Value("bool"),
143
- "days_in_custody": datasets.Value("int64"),
144
- "is_violent_recidivous": datasets.Value("bool"),
145
- "violence_decile_score": datasets.Value("int64"),
146
- "two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
147
- },
148
-
149
- "priors-prediction": {
150
- "is_male": datasets.Value("bool"),
151
- "age": datasets.Value("int64"),
152
- "race": datasets.Value("string"),
153
- "number_of_juvenile_fellonies": datasets.Value("int64"),
154
- "decile_score": datasets.Value("int64"),
155
- "number_of_juvenile_misdemeanors": datasets.Value("int64"),
156
- "number_of_other_juvenile_offenses": datasets.Value("int64"),
157
- "days_before_screening_arrest": datasets.Value("int64"),
158
- "is_recidivous": datasets.Value("bool"),
159
- "days_in_custody": datasets.Value("int64"),
160
- "is_violent_recidivous": datasets.Value("bool"),
161
- "violence_decile_score": datasets.Value("int64"),
162
- "two_year_recidivous": datasets.Value("int64"),
163
- "number_of_prior_offenses": datasets.Value("int64")
164
- },
165
-
166
- "priors-prediction-no-race": {
167
- "is_male": datasets.Value("bool"),
168
- "age": datasets.Value("int64"),
169
- "number_of_juvenile_fellonies": datasets.Value("int64"),
170
- "decile_score": datasets.Value("int64"),
171
- "number_of_juvenile_misdemeanors": datasets.Value("int64"),
172
- "number_of_other_juvenile_offenses": datasets.Value("int64"),
173
- "days_before_screening_arrest": datasets.Value("int64"),
174
- "is_recidivous": datasets.Value("bool"),
175
- "days_in_custody": datasets.Value("int64"),
176
- "is_violent_recidivous": datasets.Value("bool"),
177
- "violence_decile_score": datasets.Value("int64"),
178
- "two_year_recidivous": datasets.Value("int64"),
179
- "number_of_prior_offenses": datasets.Value("int64"),
180
- },
181
-
182
- "race": {
183
- "is_male": datasets.Value("bool"),
184
- "age": datasets.Value("int64"),
185
- "number_of_juvenile_fellonies": datasets.Value("int64"),
186
- "decile_score": datasets.Value("int64"),
187
- "number_of_juvenile_misdemeanors": datasets.Value("int64"),
188
- "number_of_other_juvenile_offenses": datasets.Value("int64"),
189
- "days_before_screening_arrest": datasets.Value("int64"),
190
- "is_recidivous": datasets.Value("bool"),
191
- "days_in_custody": datasets.Value("int64"),
192
- "is_violent_recidivous": datasets.Value("bool"),
193
- "violence_decile_score": datasets.Value("int64"),
194
- "two_year_recidivous": datasets.Value("int64"),
195
- "number_of_prior_offenses": datasets.Value("int64"),
196
- "race": datasets.ClassLabel(num_classes=6, names=("Caucasian", "African-American",
197
- "Hispanic", "Asian", "Other", "Native American")),
198
- }
199
- }
200
- features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
201
-
202
-
203
- class CompasConfig(datasets.BuilderConfig):
204
- def __init__(self, **kwargs):
205
- super(CompasConfig, self).__init__(version=VERSION, **kwargs)
206
- self.features = features_per_config[kwargs["name"]]
207
-
208
-
209
- class Compas(datasets.GeneratorBasedBuilder):
210
- # dataset versions
211
- DEFAULT_CONFIG = "two-years-recidividity"
212
- BUILDER_CONFIGS = [
213
- CompasConfig(name="race",
214
- description="Multiclass classification, predict `race` out of other features."),
215
- CompasConfig(name="two-years-recidividity",
216
- description="Compas binary classification for two-year recidividity."),
217
- CompasConfig(name="two-years-recidividity-no-race",
218
- description="Compas binary classification for two-year recidividity. Race excluded from features."),
219
- CompasConfig(name="priors-prediction",
220
- description="Compas regression task for estimating number of prior offenses of defendant."),
221
- CompasConfig(name="priors-prediction-no-race",
222
- description="Compas regression task for estimating number of prior offenses of defendant. Race excluded from features."),
223
- CompasConfig(name="encoding",
224
- description="Encoding dictionaries for discrete labels."),
225
- ]
226
-
227
-
228
- def _info(self):
229
- info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
230
- features=features_per_config[self.config.name])
231
-
232
- return info
233
-
234
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
235
- downloads = dl_manager.download_and_extract(urls_per_split)
236
-
237
- return [
238
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
239
- ]
240
-
241
- def _generate_examples(self, filepath: str):
242
- if self.config.name == "encoding":
243
- data = self.encoding_dics()
244
- else:
245
- data = pandas.read_csv(filepath)
246
- data = self.preprocess(data, config=self.config.name)
247
-
248
- for row_id, row in data.iterrows():
249
- data_row = dict(row)
250
-
251
- yield row_id, data_row
252
-
253
- def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
254
- data.drop("id", axis="columns", inplace=True)
255
- data.drop("name", axis="columns", inplace=True)
256
- data.drop("first", axis="columns", inplace=True)
257
- data.drop("last", axis="columns", inplace=True)
258
- data.drop("dob", axis="columns", inplace=True)
259
- data.drop("age_cat", axis="columns", inplace=True)
260
- data.drop("c_offense_date", axis="columns", inplace=True)
261
- data.drop("c_jail_in", axis="columns", inplace=True)
262
- data.drop("c_jail_out", axis="columns", inplace=True)
263
- data.drop("c_arrest_date", axis="columns", inplace=True)
264
- data.drop("c_charge_degree", axis="columns", inplace=True)
265
- data.drop("c_charge_desc", axis="columns", inplace=True)
266
- data.drop("r_case_number", axis="columns", inplace=True)
267
- data.drop("r_charge_degree", axis="columns", inplace=True)
268
- data.drop("r_offense_date", axis="columns", inplace=True)
269
- data.drop("r_charge_desc", axis="columns", inplace=True)
270
- data.drop("violent_recid", axis="columns", inplace=True)
271
- data.drop("vr_case_number", axis="columns", inplace=True)
272
- data.drop("vr_charge_degree", axis="columns", inplace=True)
273
- data.drop("vr_offense_date", axis="columns", inplace=True)
274
- data.drop("vr_charge_desc", axis="columns", inplace=True)
275
- data.drop("type_of_assessment", axis="columns", inplace=True)
276
- data.drop("score_text", axis="columns", inplace=True)
277
- data.drop("v_score_text", axis="columns", inplace=True)
278
- data.drop("v_screening_date", axis="columns", inplace=True)
279
- data.drop("screening_date", axis="columns", inplace=True)
280
- data.drop("start", axis="columns", inplace=True)
281
- data.drop("end", axis="columns", inplace=True)
282
- data.drop("event", axis="columns", inplace=True)
283
- data.drop("two_year_recid.1", axis="columns", inplace=True)
284
- data.drop("r_jail_in", axis="columns", inplace=True)
285
- data.drop("r_jail_out", axis="columns", inplace=True)
286
- data.drop("v_type_of_assessment", axis="columns", inplace=True)
287
- data.drop("compas_screening_date", axis="columns", inplace=True)
288
- data.drop("decile_score.1", axis="columns", inplace=True)
289
- data.drop("priors_count.1", axis="columns", inplace=True)
290
- data.drop("c_case_number", axis="columns", inplace=True)
291
- data.drop("c_days_from_compas", axis="columns", inplace=True)
292
- data.drop("r_days_from_arrest", axis="columns", inplace=True)
293
-
294
-
295
- # handle nan values
296
- data.loc[data.days_b_screening_arrest.isna(), "days_b_screening_arrest"] = -1
297
- data["days_b_screening_arrest"] = data.days_b_screening_arrest.astype(int)
298
-
299
- # transform columns into intervals
300
- data = data[(~data.in_custody.isna()) & (~data.out_custody.isna())]
301
- in_dates = data.in_custody.apply(datetime.date.fromisoformat)
302
- out_dates = data.out_custody.apply(datetime.date.fromisoformat)
303
- days_in_custody = [delta.days for delta in out_dates - in_dates]
304
- data.loc[:, "days_in_custody"] = days_in_custody
305
- data.drop("in_custody", axis="columns", inplace=True)
306
- data.drop("out_custody", axis="columns", inplace=True)
307
-
308
- data = data[["sex",
309
- "age",
310
- "race",
311
- "juv_fel_count",
312
- "decile_score",
313
- "juv_misd_count",
314
- "juv_other_count",
315
- "priors_count",
316
- "days_b_screening_arrest",
317
- "is_recid",
318
- "days_in_custody",
319
- "is_violent_recid",
320
- "v_decile_score",
321
- "two_year_recid"]]
322
-
323
- data.columns = _BASE_FEATURE_NAMES
324
-
325
- for feature in _ENCODING_DICS:
326
- if feature == "race":
327
- if config != "race":
328
- continue
329
- encoding_function = partial(self.encode, feature)
330
- data.loc[:, feature] = data[feature].apply(encoding_function)
331
- data.loc[:, "is_recidivous"] = data["is_recidivous"].apply(bool)
332
- data.loc[:, "is_violent_recidivous"] = data["is_violent_recidivous"].apply(bool)
333
- data = data.astype({"is_recidivous": "bool", "is_violent_recidivous": "bool"})
334
-
335
- return data[list(features_types_per_config[config].keys())]
336
-
337
- def encode(self, feature, value):
338
- if feature in _ENCODING_DICS:
339
- return _ENCODING_DICS[feature][value]
340
- raise ValueError(f"Unknown feature: {feature}")
341
-
342
- def encoding_dics(self):
343
- data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()])
344
- for feature, d in _ENCODING_DICS.items()]
345
- data = pandas.concat(data, axis="rows").reset_index()
346
- data.drop("index", axis="columns", inplace=True)
347
- data.columns = ["feature", "original_value", "encoded_value"]
348
-
349
- return data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
priors-prediction-no-race/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
priors-prediction/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
two-years-recidividity-no-race/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
two-years-recidividity/train.csv ADDED
The diff for this file is too large to render. See raw diff