Datasets:
Upload covertype.py
Browse files- covertype.py +91 -69
covertype.py
CHANGED
|
@@ -19,59 +19,61 @@ urls_per_split = {
|
|
| 19 |
"train": "https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz"
|
| 20 |
}
|
| 21 |
_BASE_FEATURE_NAMES = [
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
]
|
| 76 |
features_types_per_config = {
|
| 77 |
"covertype": {
|
|
@@ -85,7 +87,10 @@ features_types_per_config = {
|
|
| 85 |
"hillshade_noon": datasets.Value("float32"),
|
| 86 |
"hillshade_3pm": datasets.Value("float32"),
|
| 87 |
"horizontal_distance_to_fire_points": datasets.Value("float32"),
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
| 89 |
"soil_type_id_0": datasets.Value("bool"),
|
| 90 |
"soil_type_id_1": datasets.Value("bool"),
|
| 91 |
"soil_type_id_2": datasets.Value("bool"),
|
|
@@ -135,8 +140,11 @@ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k
|
|
| 135 |
|
| 136 |
|
| 137 |
class CovertypeConfig(datasets.BuilderConfig):
|
| 138 |
-
def __init__(self,
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
| 140 |
self.features = features_per_config[kwargs["name"]]
|
| 141 |
|
| 142 |
|
|
@@ -144,7 +152,7 @@ class Covertype(datasets.GeneratorBasedBuilder):
|
|
| 144 |
# dataset versions
|
| 145 |
DEFAULT_CONFIG = "covertype"
|
| 146 |
BUILDER_CONFIGS = [
|
| 147 |
-
CovertypeConfig(name="covertype",
|
| 148 |
description="Covertype for multiclass classification.")
|
| 149 |
]
|
| 150 |
|
|
@@ -153,35 +161,49 @@ class Covertype(datasets.GeneratorBasedBuilder):
|
|
| 153 |
if self.config.name not in features_per_config:
|
| 154 |
raise ValueError(f"Unknown configuration: {self.config.name}")
|
| 155 |
|
| 156 |
-
info = datasets.DatasetInfo(description=DESCRIPTION,
|
|
|
|
|
|
|
| 157 |
features=features_per_config[self.config.name])
|
| 158 |
|
| 159 |
return info
|
| 160 |
|
| 161 |
-
def _split_generators(self,
|
|
|
|
| 162 |
downloads = dl_manager.download_and_extract(urls_per_split)
|
| 163 |
|
| 164 |
return [
|
| 165 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
|
|
|
| 166 |
]
|
| 167 |
|
| 168 |
-
def _generate_examples(self,
|
|
|
|
| 169 |
# try:
|
| 170 |
# with gzip.open(filepath) as log:
|
| 171 |
-
# data = pandas.read_csv(log,
|
|
|
|
| 172 |
# except gzip.BadGzipFile:
|
| 173 |
-
data = pandas.read_csv(filepath,
|
|
|
|
| 174 |
print(data.columns)
|
| 175 |
-
print(data.shape[1],
|
|
|
|
| 176 |
data.columns = _BASE_FEATURE_NAMES
|
| 177 |
-
data = self.preprocess(data,
|
|
|
|
| 178 |
|
| 179 |
-
for row_id,
|
|
|
|
| 180 |
data_row = dict(row)
|
| 181 |
|
| 182 |
-
yield row_id,
|
|
|
|
| 183 |
|
| 184 |
-
def preprocess(self,
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
return data
|
|
|
|
| 19 |
"train": "https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz"
|
| 20 |
}
|
| 21 |
_BASE_FEATURE_NAMES = [
|
| 22 |
+
"elevation",
|
| 23 |
+
"aspect",
|
| 24 |
+
"slope",
|
| 25 |
+
"horizontal_distance_to_hydrology",
|
| 26 |
+
"vertical_distance_to_hydrology",
|
| 27 |
+
"horizontal_distance_to_roadways",
|
| 28 |
+
"hillshade_9am",
|
| 29 |
+
"hillshade_noon",
|
| 30 |
+
"hillshade_3pm",
|
| 31 |
+
"horizontal_distance_to_fire_points",
|
| 32 |
+
"wilderness_area_id_0",
|
| 33 |
+
"wilderness_area_id_1",
|
| 34 |
+
"wilderness_area_id_2",
|
| 35 |
+
"wilderness_area_id_3",
|
| 36 |
+
"soil_type_id_0",
|
| 37 |
+
"soil_type_id_1",
|
| 38 |
+
"soil_type_id_2",
|
| 39 |
+
"soil_type_id_3",
|
| 40 |
+
"soil_type_id_4",
|
| 41 |
+
"soil_type_id_5",
|
| 42 |
+
"soil_type_id_6",
|
| 43 |
+
"soil_type_id_7",
|
| 44 |
+
"soil_type_id_8",
|
| 45 |
+
"soil_type_id_9",
|
| 46 |
+
"soil_type_id_10",
|
| 47 |
+
"soil_type_id_11",
|
| 48 |
+
"soil_type_id_12",
|
| 49 |
+
"soil_type_id_13",
|
| 50 |
+
"soil_type_id_14",
|
| 51 |
+
"soil_type_id_15",
|
| 52 |
+
"soil_type_id_16",
|
| 53 |
+
"soil_type_id_17",
|
| 54 |
+
"soil_type_id_18",
|
| 55 |
+
"soil_type_id_19",
|
| 56 |
+
"soil_type_id_20",
|
| 57 |
+
"soil_type_id_21",
|
| 58 |
+
"soil_type_id_22",
|
| 59 |
+
"soil_type_id_23",
|
| 60 |
+
"soil_type_id_24",
|
| 61 |
+
"soil_type_id_25",
|
| 62 |
+
"soil_type_id_26",
|
| 63 |
+
"soil_type_id_27",
|
| 64 |
+
"soil_type_id_28",
|
| 65 |
+
"soil_type_id_29",
|
| 66 |
+
"soil_type_id_30",
|
| 67 |
+
"soil_type_id_31",
|
| 68 |
+
"soil_type_id_32",
|
| 69 |
+
"soil_type_id_33",
|
| 70 |
+
"soil_type_id_34",
|
| 71 |
+
"soil_type_id_35",
|
| 72 |
+
"soil_type_id_36",
|
| 73 |
+
"soil_type_id_37",
|
| 74 |
+
"soil_type_id_38",
|
| 75 |
+
"soil_type_id_39",
|
| 76 |
+
"cover_type"
|
| 77 |
]
|
| 78 |
features_types_per_config = {
|
| 79 |
"covertype": {
|
|
|
|
| 87 |
"hillshade_noon": datasets.Value("float32"),
|
| 88 |
"hillshade_3pm": datasets.Value("float32"),
|
| 89 |
"horizontal_distance_to_fire_points": datasets.Value("float32"),
|
| 90 |
+
"wilderness_area_id_0": datasets.Value("bool"),
|
| 91 |
+
"wilderness_area_id_1": datasets.Value("bool"),
|
| 92 |
+
"wilderness_area_id_2": datasets.Value("bool"),
|
| 93 |
+
"wilderness_area_id_3": datasets.Value("bool"),
|
| 94 |
"soil_type_id_0": datasets.Value("bool"),
|
| 95 |
"soil_type_id_1": datasets.Value("bool"),
|
| 96 |
"soil_type_id_2": datasets.Value("bool"),
|
|
|
|
| 140 |
|
| 141 |
|
| 142 |
class CovertypeConfig(datasets.BuilderConfig):
|
| 143 |
+
def __init__(self",
|
| 144 |
+
" **kwargs):
|
| 145 |
+
super(CovertypeConfig",
|
| 146 |
+
" self).__init__(version=VERSION",
|
| 147 |
+
" **kwargs)
|
| 148 |
self.features = features_per_config[kwargs["name"]]
|
| 149 |
|
| 150 |
|
|
|
|
| 152 |
# dataset versions
|
| 153 |
DEFAULT_CONFIG = "covertype"
|
| 154 |
BUILDER_CONFIGS = [
|
| 155 |
+
CovertypeConfig(name="covertype"",
|
| 156 |
description="Covertype for multiclass classification.")
|
| 157 |
]
|
| 158 |
|
|
|
|
| 161 |
if self.config.name not in features_per_config:
|
| 162 |
raise ValueError(f"Unknown configuration: {self.config.name}")
|
| 163 |
|
| 164 |
+
info = datasets.DatasetInfo(description=DESCRIPTION",
|
| 165 |
+
" citation=_CITATION",
|
| 166 |
+
" homepage=_HOMEPAGE",
|
| 167 |
features=features_per_config[self.config.name])
|
| 168 |
|
| 169 |
return info
|
| 170 |
|
| 171 |
+
def _split_generators(self",
|
| 172 |
+
" dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 173 |
downloads = dl_manager.download_and_extract(urls_per_split)
|
| 174 |
|
| 175 |
return [
|
| 176 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN",
|
| 177 |
+
" gen_kwargs={"filepath": downloads["train"]})
|
| 178 |
]
|
| 179 |
|
| 180 |
+
def _generate_examples(self",
|
| 181 |
+
" filepath: str):
|
| 182 |
# try:
|
| 183 |
# with gzip.open(filepath) as log:
|
| 184 |
+
# data = pandas.read_csv(log",
|
| 185 |
+
" header=None)
|
| 186 |
# except gzip.BadGzipFile:
|
| 187 |
+
data = pandas.read_csv(filepath",
|
| 188 |
+
" header=None)
|
| 189 |
print(data.columns)
|
| 190 |
+
print(data.shape[1]",
|
| 191 |
+
" len(_BASE_FEATURE_NAMES))
|
| 192 |
data.columns = _BASE_FEATURE_NAMES
|
| 193 |
+
data = self.preprocess(data",
|
| 194 |
+
" config=self.config.name)
|
| 195 |
|
| 196 |
+
for row_id",
|
| 197 |
+
" row in data.iterrows():
|
| 198 |
data_row = dict(row)
|
| 199 |
|
| 200 |
+
yield row_id",
|
| 201 |
+
" data_row
|
| 202 |
|
| 203 |
+
def preprocess(self",
|
| 204 |
+
" data: pandas.DataFrame",
|
| 205 |
+
" config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
|
| 206 |
+
data.loc[:",
|
| 207 |
+
" "cover_type"] = data["cover_type"].apply(lambda x: x - 1)
|
| 208 |
|
| 209 |
return data
|