Datasets:
mteb
/

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
Dataset Viewer
Auto-converted to Parquet
image
image
id
string
text
string
modality
string
corpus-1284
null
image
corpus-1324
null
image
corpus-1325
null
image
corpus-1359
null
image
corpus-1364
null
image
corpus-1459
null
image
corpus-1627
null
image
corpus-1634
null
image
corpus-1836
null
image
corpus-1865
null
image
corpus-1936
null
image
corpus-1937
null
image
corpus-2356
null
image
corpus-2416
null
image
corpus-2514
null
image
corpus-2584
null
image
corpus-2751
null
image
corpus-2789
null
image
corpus-2846
null
image
corpus-3146
null
image
corpus-3164
null
image
corpus-3267
null
image
corpus-3624
null
image
corpus-3765
null
image
corpus-3869
null
image
corpus-3924
null
image
corpus-3968
null
image
corpus-3976
null
image
corpus-3987
null
image
corpus-4127
null
image
corpus-4135
null
image
corpus-4239
null
image
corpus-4265
null
image
corpus-4319
null
image
corpus-4536
null
image
corpus-4563
null
image
corpus-4582
null
image
corpus-4583
null
image
corpus-4615
null
image
corpus-4716
null
image
corpus-4879
null
image
corpus-4958
null
image
corpus-5162
null
image
corpus-5174
null
image
corpus-5218
null
image
corpus-5219
null
image
corpus-5379
null
image
corpus-5389
null
image
corpus-5429
null
image
corpus-5438
null
image
corpus-5461
null
image
corpus-5462
null
image
corpus-5734
null
image
corpus-5791
null
image
corpus-5792
null
image
corpus-5846
null
image
corpus-5879
null
image
corpus-5968
null
image
corpus-5978
null
image
corpus-6135
null
image
corpus-6195
null
image
corpus-6231
null
image
corpus-6243
null
image
corpus-6329
null
image
corpus-6348
null
image
corpus-6387
null
image
corpus-6427
null
image
corpus-6524
null
image
corpus-6593
null
image
corpus-6752
null
image
corpus-6927
null
image
corpus-7193
null
image
corpus-7265
null
image
corpus-7291
null
image
corpus-7314
null
image
corpus-7392
null
image
corpus-7396
null
image
corpus-7451
null
image
corpus-7516
null
image
corpus-7521
null
image
corpus-7596
null
image
corpus-7612
null
image
corpus-7645
null
image
corpus-7652
null
image
corpus-7658
null
image
corpus-7689
null
image
corpus-7694
null
image
corpus-7915
null
image
corpus-8261
null
image
corpus-8294
null
image
corpus-8376
null
image
corpus-8524
null
image
corpus-8541
null
image
corpus-8567
null
image
corpus-8653
null
image
corpus-8674
null
image
corpus-8691
null
image
corpus-8716
null
image
corpus-9241
null
image
corpus-9357
null
image
End of preview. Expand in Data Studio

HatefulMemesT2IRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

Retrieve captions based on memes to assess OCR abilities.

Task category t2i
Domains Encyclopaedic
Reference https://arxiv.org/pdf/2005.04790

Source datasets:

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_task("HatefulMemesT2IRetrieval")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repository.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{kiela2020hateful,
  author = {Kiela, Douwe and Firooz, Hamed and Mohan, Aravind and Goswami, Vedanuj and Singh, Amanpreet and Ringshia, Pratik and Testuggine, Davide},
  journal = {Advances in neural information processing systems},
  pages = {2611--2624},
  title = {The hateful memes challenge: Detecting hate speech in multimodal memes},
  volume = {33},
  year = {2020},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("HatefulMemesT2IRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 9045,
        "number_of_characters": 55468,
        "documents_text_statistics": null,
        "documents_image_statistics": {
            "min_image_width": 94,
            "average_image_width": 599.7880671224362,
            "max_image_width": 825,
            "min_image_height": 94,
            "average_image_height": 528.5787445618397,
            "max_image_height": 823,
            "unique_images": 8045
        },
        "queries_text_statistics": {
            "total_text_length": 55468,
            "min_text_length": 3,
            "average_text_length": 55.468,
            "max_text_length": 382,
            "unique_texts": 829
        },
        "queries_image_statistics": null,
        "relevant_docs_statistics": {
            "num_relevant_docs": 1000,
            "min_relevant_docs_per_query": 1,
            "average_relevant_docs_per_query": 1.0,
            "max_relevant_docs_per_query": 1,
            "unique_relevant_docs": 1000
        },
        "top_ranked_statistics": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
26