Datasets:
				
			
			
	
			
	
		
			
	
		Modalities:
	
	
	
		
	
	Text
	
	
	Formats:
	
	
	
		
	
	parquet
	
	
	Languages:
	
	
	
		
	
	English
	
	
	Size:
	
	
	
	
	10K - 100K
	
	
	ArXiv:
	
	
	
	
	
	
	
	
Tags:
	
	
	
	
	math-word-problems
	
	
	License:
	
	
	
	
	
	
	
Commit 
							
							·
						
						1383163
	
1
								Parent(s):
							
							60b4b82
								
Delete loading script
Browse files
    	
        gsm8k.py
    DELETED
    
    | @@ -1,135 +0,0 @@ | |
| 1 | 
            -
            # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
         | 
| 2 | 
            -
            #
         | 
| 3 | 
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            -
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            -
            # You may obtain a copy of the License at
         | 
| 6 | 
            -
            #
         | 
| 7 | 
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            -
            #
         | 
| 9 | 
            -
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            -
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            -
            # limitations under the License.
         | 
| 14 | 
            -
            """Grade School Math 8k dataset."""
         | 
| 15 | 
            -
             | 
| 16 | 
            -
            import json
         | 
| 17 | 
            -
            import textwrap
         | 
| 18 | 
            -
             | 
| 19 | 
            -
            import datasets
         | 
| 20 | 
            -
             | 
| 21 | 
            -
             | 
| 22 | 
            -
            _CITATION = """\
         | 
| 23 | 
            -
            @misc{cobbe2021training,
         | 
| 24 | 
            -
                  title={Training Verifiers to Solve Math Word Problems},
         | 
| 25 | 
            -
                  author={Karl Cobbe and Vineet Kosaraju and Mohammad Bavarian and Jacob Hilton and Reiichiro Nakano and Christopher Hesse and John Schulman},
         | 
| 26 | 
            -
                  year={2021},
         | 
| 27 | 
            -
                  eprint={2110.14168},
         | 
| 28 | 
            -
                  archivePrefix={arXiv},
         | 
| 29 | 
            -
                  primaryClass={cs.LG}
         | 
| 30 | 
            -
            }
         | 
| 31 | 
            -
            """
         | 
| 32 | 
            -
             | 
| 33 | 
            -
            _DESCRIPTION = """\
         | 
| 34 | 
            -
            GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality
         | 
| 35 | 
            -
            linguistically diverse grade school math word problems. The
         | 
| 36 | 
            -
            dataset was created to support the task of question answering
         | 
| 37 | 
            -
            on basic mathematical problems that require multi-step reasoning.
         | 
| 38 | 
            -
            """
         | 
| 39 | 
            -
             | 
| 40 | 
            -
            _HOMEPAGE = "https://openai.com/blog/grade-school-math"
         | 
| 41 | 
            -
             | 
| 42 | 
            -
            _LICENSE = "MIT"
         | 
| 43 | 
            -
             | 
| 44 | 
            -
            _BASE_URL = "https://raw.githubusercontent.com/openai/grade-school-math/master/grade_school_math/data/"
         | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
            class Gsm8kConfig(datasets.BuilderConfig):
         | 
| 48 | 
            -
                """BuilderConfig for GSM8K."""
         | 
| 49 | 
            -
             | 
| 50 | 
            -
                def __init__(self, urls, **kwargs):
         | 
| 51 | 
            -
                    """BuilderConfig for GSM8K.
         | 
| 52 | 
            -
             | 
| 53 | 
            -
                    Args:
         | 
| 54 | 
            -
                    urls: *dict[string]*, the urls for each split of the GSM8k set.
         | 
| 55 | 
            -
                    """
         | 
| 56 | 
            -
                    super().__init__(version=datasets.Version("1.1.0"), **kwargs)
         | 
| 57 | 
            -
                    self.urls = urls
         | 
| 58 | 
            -
             | 
| 59 | 
            -
             | 
| 60 | 
            -
            class Gsm8k(datasets.GeneratorBasedBuilder):
         | 
| 61 | 
            -
                """Grade School Math 8k (GSM8K)"""
         | 
| 62 | 
            -
             | 
| 63 | 
            -
                BUILDER_CONFIGS = [
         | 
| 64 | 
            -
                    Gsm8kConfig(
         | 
| 65 | 
            -
                        name="main",
         | 
| 66 | 
            -
                        description=textwrap.dedent(
         | 
| 67 | 
            -
                            """
         | 
| 68 | 
            -
                            It is segmented into 7.5K training problems and 1K test problems.
         | 
| 69 | 
            -
                            These problems take between 2 and 8 steps to solve, and solutions
         | 
| 70 | 
            -
                            primarily involve performing a sequence of elementary calculations
         | 
| 71 | 
            -
                            using basic arithmetic operations (+ - / *) to reach the final
         | 
| 72 | 
            -
                            answer. A bright middle school student should be able to solve
         | 
| 73 | 
            -
                            every problem.
         | 
| 74 | 
            -
                            """,
         | 
| 75 | 
            -
                        ),
         | 
| 76 | 
            -
                        urls={
         | 
| 77 | 
            -
                            "train": _BASE_URL + "train.jsonl",
         | 
| 78 | 
            -
                            "test": _BASE_URL + "test.jsonl",
         | 
| 79 | 
            -
                        },
         | 
| 80 | 
            -
                    ),
         | 
| 81 | 
            -
                    Gsm8kConfig(
         | 
| 82 | 
            -
                        name="socratic",
         | 
| 83 | 
            -
                        description=textwrap.dedent(
         | 
| 84 | 
            -
                            """
         | 
| 85 | 
            -
                            Additionally, there is a modified solution format that injects
         | 
| 86 | 
            -
                            automatically generated "Socratic subquestions" before each step.
         | 
| 87 | 
            -
                            """
         | 
| 88 | 
            -
                        ),
         | 
| 89 | 
            -
                        urls={
         | 
| 90 | 
            -
                            "train": _BASE_URL + "train_socratic.jsonl",
         | 
| 91 | 
            -
                            "test": _BASE_URL + "test_socratic.jsonl",
         | 
| 92 | 
            -
                        },
         | 
| 93 | 
            -
                    ),
         | 
| 94 | 
            -
                ]
         | 
| 95 | 
            -
             | 
| 96 | 
            -
                def _info(self):
         | 
| 97 | 
            -
                    features = datasets.Features(
         | 
| 98 | 
            -
                        {
         | 
| 99 | 
            -
                            "question": datasets.Value("string"),
         | 
| 100 | 
            -
                            "answer": datasets.Value("string"),
         | 
| 101 | 
            -
                        }
         | 
| 102 | 
            -
                    )
         | 
| 103 | 
            -
                    return datasets.DatasetInfo(
         | 
| 104 | 
            -
                        description=_DESCRIPTION,
         | 
| 105 | 
            -
                        features=features,
         | 
| 106 | 
            -
                        homepage=_HOMEPAGE,
         | 
| 107 | 
            -
                        license=_LICENSE,
         | 
| 108 | 
            -
                        citation=_CITATION,
         | 
| 109 | 
            -
                    )
         | 
| 110 | 
            -
             | 
| 111 | 
            -
                def _split_generators(self, dl_manager):
         | 
| 112 | 
            -
                    data_dir = dl_manager.download_and_extract(self.config.urls)
         | 
| 113 | 
            -
                    return [
         | 
| 114 | 
            -
                        datasets.SplitGenerator(
         | 
| 115 | 
            -
                            name=datasets.Split.TRAIN,
         | 
| 116 | 
            -
                            gen_kwargs={
         | 
| 117 | 
            -
                                "filepath": data_dir["train"],
         | 
| 118 | 
            -
                            },
         | 
| 119 | 
            -
                        ),
         | 
| 120 | 
            -
                        datasets.SplitGenerator(
         | 
| 121 | 
            -
                            name=datasets.Split.TEST,
         | 
| 122 | 
            -
                            gen_kwargs={
         | 
| 123 | 
            -
                                "filepath": data_dir["test"],
         | 
| 124 | 
            -
                            },
         | 
| 125 | 
            -
                        ),
         | 
| 126 | 
            -
                    ]
         | 
| 127 | 
            -
             | 
| 128 | 
            -
                def _generate_examples(self, filepath):
         | 
| 129 | 
            -
                    with open(filepath, encoding="utf-8") as f:
         | 
| 130 | 
            -
                        for key, row in enumerate(f):
         | 
| 131 | 
            -
                            data = json.loads(row)
         | 
| 132 | 
            -
                            yield key, {
         | 
| 133 | 
            -
                                "question": data["question"],
         | 
| 134 | 
            -
                                "answer": data["answer"],
         | 
| 135 | 
            -
                            }
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 

