import numpy as np import pandas as pd def load_ATFM(dset_name, mode, path): """ Loads the dataset from TSV files, handling NaN values, and returns the data and labels. Parameters: - dset_name: String, the base name for the TSV files - mode: String, typically 'TRAIN' or 'TEST' - path: String, the directory path where files are stored Returns: - data: Numpy array of shape (N, T, 3), with NaN values preserved - labels: Numpy array of shape (N,) """ variables = ['X', 'Y', 'Z'] data = [] labels = None for var in variables: tsv_filename = f'{path}/{dset_name}_{mode}_{var}.tsv' df = pd.read_csv(tsv_filename, sep='\t', header=None, na_values='NaN') if labels is None: labels = df.values[:, 0] # Assumes labels are the first column and only need to be read once var_data = df.values[:, 1:] data.append(var_data) data = np.stack(data, axis=-1) return data, labels.astype(int) # Example usage train_data, train_labels = load_ATFM('RKSIa', 'TRAIN', 'RKSIa') test_data, test_labels = load_ATFM('RKSIa', 'TEST', 'RKSIa') # Print the shapes of the loaded data print(train_data.shape, train_labels.shape) print(test_data.shape, test_labels.shape)