File size: 4,918 Bytes
a802833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

---
pretty_name: "MoodPulse: Processed Data and Embeddings for Emotion Analysis"
license: mit
language:
- en
tags:
- emotion-classification
- affective-computing
- text-classification
- goemotions
- distilbert
- embeddings
task_categories:
- text-classification
dataset_info:
  source_dataset: "GoEmotions"
  includes:
    - raw data
    - tokenized data
    - transformer embeddings
  processed_by: "AffectiveLens pipeline"
---

# πŸ“Š MoodPulse: Processed Data and Embeddings for Emotion Analysis

**MoodPulse** provides a self-contained dataset repository for use with the [AffectiveLens](https://github.com/your-username/AffectiveLens) projectβ€”an end-to-end NLP pipeline for emotion detection in text. It includes the full processing stack from raw text to final DistilBERT-based sentence embeddings, allowing researchers to bypass time-consuming preprocessing and directly train or benchmark models.

---

## 🧾 Dataset Description

This dataset builds upon the original **[GoEmotions](https://github.com/google-research/goemotions)** dataset by Google Research, which includes 58k carefully curated Reddit comments labeled with 28 fine-grained emotions.

In **MoodPulse**, these labels are condensed into **three mutually exclusive emotion classes**:
- Positive
- Neutral
- Negative

The dataset is structured to support every phase of the AffectiveLens pipeline:
- Raw CSVs
- Tokenized data in Hugging Face `datasets` format
- Precomputed `DistilBERT` embeddings

This enables full reproduction of results without requiring re-tokenization or embedding computation.

---

## πŸ—‚οΈ Dataset Structure

The dataset is organized into logical folders corresponding to different stages of processing:

```

/
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ full\_dataset/
β”‚   β”‚   β”œβ”€β”€ goemotions\_1.csv
β”‚   β”‚   β”œβ”€β”€ goemotions\_2.csv
β”‚   β”‚   └── goemotions\_3.csv
β”‚   β”‚
β”‚   β”œβ”€β”€ processed/
β”‚   β”‚   β”œβ”€β”€ GoEmotions\_Tokenized\_Train\_Pool/
β”‚   β”‚   └── GoEmotions\_Tokenized\_Test/
β”‚   β”‚
β”‚   └── embeddings/
β”‚       β”œβ”€β”€ MentalTrain/
β”‚       └── MentalTest/

````

### πŸ“ Folder Descriptions

- **`data/full_dataset/`**  
  Original GoEmotions CSV files split into parts.

- **`data/processed/`**  
  Tokenized datasets using Hugging Face `datasets` format, ready for embedding extraction.

- **`data/embeddings/`**  
  Final DistilBERT `[CLS]` token embeddings for the training and test sets. These are saved as Hugging Face datasets and ready for model input.

---

## πŸš€ How to Use

You can load the tokenized data or precomputed embeddings directly using the Hugging Face `datasets` library.

```python
from datasets import load_dataset

# Define repository ID and folder to load
repo_id = "psyrishi/MoodPulse"
data_folder = "data/embeddings/MentalTrain"  # or "data/embeddings/MentalTest"

# Load the dataset split
train_embeddings = load_dataset(repo_id, data_dir=data_folder, split='train')

print("Sample entry:")
print(train_embeddings[0])

# Access embeddings and labels
embedding_vector = train_embeddings[0]['cls_embedding']
label_vector = train_embeddings[0]['labels']
````

> πŸ’‘ Tip: You can replace `data_dir` to load the tokenized datasets instead, if desired.

---

## πŸ“Œ Use Cases

* Train or benchmark emotion classification models using high-quality, preprocessed embeddings.
* Compare performance of traditional ML models vs. transformer-based models.
* Build emotion-aware applications for mental health, customer feedback, or social media monitoring.

---

## πŸ“š Citation

This dataset is a **processed derivative** of the original GoEmotions dataset:

```bibtex
@inproceedings{demszky2020goemotions,
  title={GoEmotions: A Dataset of Fine-Grained Emotions},
  author={Demszky, Dorottya and Movshovitz-Attias, Dana and Ko, Jeongwoo and Cowen, Alan and Nemade, Gaurav and Ravi, Sujith},
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)},
  year={2020}
}
```

If you use **MoodPulse** in your work, please cite both the original GoEmotions authors and link back to this repository.

---

## βš–οΈ Licensing

* **Original data**: Provided under the **Creative Commons Attribution 4.0 International (CC BY 4.0)** license by Google Research.
* **Code and processing logic**: Provided under the **MIT License**.

Please refer to the [LICENSE](./LICENSE) file for full details.

---

## πŸ™ Acknowledgments

Special thanks to Google Research for the creation and open release of the GoEmotions dataset, and to the Hugging Face team for providing the open-source tools that made this processing pipeline possible.

---

## πŸ”— Related Projects

* [GoEmotions Dataset (Google)](https://github.com/google-research/goemotions)
* [AffectiveLens](https://github.com/psywarrior1998/AffectiveLens) β€” Emotion detection pipeline built on top of this dataset.

---