Datasets:
ArXiv:
License:
| import csv | |
| import json | |
| import numpy as np | |
| import torch | |
| import os | |
| from minicons import scorer | |
| from pathlib import Path | |
| def load_sentences(filepath): | |
| sentence_pairs = [] | |
| with open(filepath, 'r', encoding='utf-8') as file: | |
| reader = csv.reader(file, delimiter=';') | |
| next(reader) | |
| for row in reader: | |
| good_sentence = row[0] | |
| bad_sentence = row[1] | |
| sentence_pairs.append([good_sentence, bad_sentence]) | |
| return sentence_pairs | |
| def compute_score(data, model, mode): | |
| if mode == 'ilm': | |
| score = model.sequence_score(data, reduction=lambda x: x.sum(0).item()) | |
| elif mode == 'mlm': | |
| score = model.sequence_score(data, reduction=lambda x: x.sum(0).item(), PLL_metric='within_word_l2r') | |
| return score | |
| def process_files(model, mode, model_name): | |
| root_folder = Path("./data/base") | |
| file_names = sorted([str(file) for file in root_folder.iterdir() if file.name.endswith("csv")]) | |
| print(f"Perform benchmarking on the following {len(file_names)} datasets:\n*", "\n* ".join(file_names)) | |
| f_out = open(f'results-{model_name.replace("/", "-")}.jsonl', "wt") | |
| for file_path in file_names: | |
| try: | |
| pairs = load_sentences(file_path) | |
| results = [] | |
| differences = 0 | |
| accuracy = 0 | |
| for pair in pairs: | |
| score = compute_score(pair, model, mode) | |
| results.append({ | |
| 'good_sentence': pair[0], | |
| 'bad_sentence': pair[1], | |
| 'good_score': score[0], | |
| 'bad_score': score[1], | |
| 'difference': score[0] - score[1], | |
| 'correct': score[0] > score[1] | |
| }) | |
| if score[0] > score[1]: | |
| accuracy += 1 | |
| differences += score[0] - score[1] | |
| mean_difference = differences / len(pairs) | |
| accuracy = accuracy / len(pairs) | |
| summary = { | |
| 'file_name': file_path, | |
| 'mean_difference': mean_difference, | |
| 'accuracy': accuracy * 100, | |
| 'total_pairs': len(pairs), | |
| 'model_name': model_name, | |
| } | |
| f_out.write(json.dumps(summary) + "\n") | |
| print(summary) | |
| except Exception as e: | |
| print(f"Error processing {file_path}: {str(e)}") | |
| continue | |
| f_out.close() | |
| mlm_model_names = [ | |
| "dbmdz/electra-small-turkish-cased-generator", | |
| "dbmdz/electra-base-turkish-cased-generator", | |
| "dbmdz/electra-base-turkish-mc4-cased-generator", | |
| "dbmdz/electra-base-turkish-mc4-uncased-generator", | |
| "dbmdz/bert-base-turkish-cased", | |
| "dbmdz/bert-base-turkish-uncased", | |
| "dbmdz/bert-base-turkish-128k-cased", | |
| "dbmdz/bert-base-turkish-128k-uncased", | |
| "dbmdz/distilbert-base-turkish-cased", | |
| "dbmdz/convbert-base-turkish-cased", | |
| "dbmdz/convbert-base-turkish-mc4-cased", | |
| "dbmdz/convbert-base-turkish-mc4-uncased", | |
| ] | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| mode = 'mlm' | |
| for model_name in mlm_model_names: | |
| model = scorer.MaskedLMScorer(model_name, device) | |
| process_files( | |
| model=model, | |
| mode=mode, | |
| model_name=model_name, | |
| ) | |