Datasets:
complete the readme, fill in the loader
Browse files- README.md +27 -26
- rustance.py +39 -40
README.md
CHANGED
|
@@ -10,7 +10,7 @@ licenses:
|
|
| 10 |
multilinguality:
|
| 11 |
- monolingual
|
| 12 |
size_categories:
|
| 13 |
-
-
|
| 14 |
source_datasets:
|
| 15 |
- original
|
| 16 |
task_categories:
|
|
@@ -80,19 +80,19 @@ Russian, as spoken on the Meduza website (i.e. from multiple countries) (`bcp47:
|
|
| 80 |
|
| 81 |
#### zulu_stance
|
| 82 |
|
| 83 |
-
- **Size of downloaded dataset files:**
|
| 84 |
-
- **Size of the generated dataset:**
|
| 85 |
-
- **Total amount of disk used:**
|
| 86 |
|
| 87 |
An example of 'train' looks as follows.
|
| 88 |
|
| 89 |
```
|
| 90 |
{
|
| 91 |
'id': '0',
|
| 92 |
-
'text': '
|
| 93 |
-
'
|
| 94 |
-
'stance':
|
| 95 |
-
|
| 96 |
```
|
| 97 |
|
| 98 |
|
|
@@ -104,57 +104,56 @@ An example of 'train' looks as follows.
|
|
| 104 |
- `stance`: a class label representing the stance the text expresses towards the target. Full tagset with indices:
|
| 105 |
|
| 106 |
```
|
| 107 |
-
0: "
|
| 108 |
-
1: "
|
| 109 |
-
2: "
|
|
|
|
| 110 |
```
|
| 111 |
|
| 112 |
### Data Splits
|
| 113 |
|
| 114 |
| name |train|
|
| 115 |
|---------|----:|
|
| 116 |
-
|
|
| 117 |
|
| 118 |
## Dataset Creation
|
| 119 |
|
| 120 |
### Curation Rationale
|
| 121 |
|
| 122 |
-
|
| 123 |
|
| 124 |
### Source Data
|
| 125 |
|
| 126 |
#### Initial Data Collection and Normalization
|
| 127 |
|
| 128 |
-
The
|
| 129 |
-
and then translated manually to Zulu.
|
| 130 |
|
| 131 |
#### Who are the source language producers?
|
| 132 |
|
| 133 |
-
|
| 134 |
|
| 135 |
### Annotations
|
| 136 |
|
| 137 |
#### Annotation process
|
| 138 |
|
| 139 |
-
|
| 140 |
|
| 141 |
#### Who are the annotators?
|
| 142 |
|
| 143 |
-
|
| 144 |
|
| 145 |
### Personal and Sensitive Information
|
| 146 |
|
| 147 |
-
The data was public at the time of collection.
|
| 148 |
|
| 149 |
## Considerations for Using the Data
|
| 150 |
|
| 151 |
### Social Impact of Dataset
|
| 152 |
|
| 153 |
-
There's a risk of
|
| 154 |
|
| 155 |
### Discussion of Biases
|
| 156 |
|
| 157 |
-
While the data is in Zulu, the source text is not from or about Zulu-speakers, and so still expresses the social biases and topics found in English-speaking Twitter users. Further, some of the topics are USA-specific. The sentiments and ideas in this dataset do not represent Zulu speakers.
|
| 158 |
|
| 159 |
### Other Known Limitations
|
| 160 |
|
|
@@ -173,11 +172,13 @@ The authors distribute this data under Creative Commons attribution license, CC-
|
|
| 173 |
### Citation Information
|
| 174 |
|
| 175 |
```
|
| 176 |
-
@inproceedings{
|
| 177 |
-
title={
|
| 178 |
-
author={
|
| 179 |
-
booktitle={
|
| 180 |
-
|
|
|
|
|
|
|
| 181 |
}
|
| 182 |
```
|
| 183 |
|
|
|
|
| 10 |
multilinguality:
|
| 11 |
- monolingual
|
| 12 |
size_categories:
|
| 13 |
+
- n<1K
|
| 14 |
source_datasets:
|
| 15 |
- original
|
| 16 |
task_categories:
|
|
|
|
| 80 |
|
| 81 |
#### zulu_stance
|
| 82 |
|
| 83 |
+
- **Size of downloaded dataset files:** 349.79 KiB
|
| 84 |
+
- **Size of the generated dataset:** 366.11 KiB
|
| 85 |
+
- **Total amount of disk used:** 715.90 KiB
|
| 86 |
|
| 87 |
An example of 'train' looks as follows.
|
| 88 |
|
| 89 |
```
|
| 90 |
{
|
| 91 |
'id': '0',
|
| 92 |
+
'text': 'Волки, волки!!',
|
| 93 |
+
'title': 'Минобороны обвинило «гражданского сотрудника» в публикации скриншота из игры вместо фото террористов. И показало новое «неоспоримое подтверждение»',
|
| 94 |
+
'stance': 3
|
| 95 |
+
}
|
| 96 |
```
|
| 97 |
|
| 98 |
|
|
|
|
| 104 |
- `stance`: a class label representing the stance the text expresses towards the target. Full tagset with indices:
|
| 105 |
|
| 106 |
```
|
| 107 |
+
0: "support",
|
| 108 |
+
1: "deny",
|
| 109 |
+
2: "query",
|
| 110 |
+
3: "comment",
|
| 111 |
```
|
| 112 |
|
| 113 |
### Data Splits
|
| 114 |
|
| 115 |
| name |train|
|
| 116 |
|---------|----:|
|
| 117 |
+
|rustance|958 sentences|
|
| 118 |
|
| 119 |
## Dataset Creation
|
| 120 |
|
| 121 |
### Curation Rationale
|
| 122 |
|
| 123 |
+
Toy data for training and especially evaluating stance prediction in Russian
|
| 124 |
|
| 125 |
### Source Data
|
| 126 |
|
| 127 |
#### Initial Data Collection and Normalization
|
| 128 |
|
| 129 |
+
The data is comments scraped from a Russian news site not situated in Russia, [Meduza](https://meduza.io/), in 2018.
|
|
|
|
| 130 |
|
| 131 |
#### Who are the source language producers?
|
| 132 |
|
| 133 |
+
Russian speakers including from the Russian diaspora, especially Latvia
|
| 134 |
|
| 135 |
### Annotations
|
| 136 |
|
| 137 |
#### Annotation process
|
| 138 |
|
| 139 |
+
Annotators labelled comments for supporting, denying, querying or just commenting on a news article.
|
| 140 |
|
| 141 |
#### Who are the annotators?
|
| 142 |
|
| 143 |
+
Russian native speakers, IT education, male, 20s.
|
| 144 |
|
| 145 |
### Personal and Sensitive Information
|
| 146 |
|
| 147 |
+
The data was public at the time of collection. No PII removal has been performed.
|
| 148 |
|
| 149 |
## Considerations for Using the Data
|
| 150 |
|
| 151 |
### Social Impact of Dataset
|
| 152 |
|
| 153 |
+
There's a risk of misinformative content being in this data. The data has NOT been vetted for any content, so there's a risk of [harmful text](https://arxiv.org/abs/2204.14256) content.
|
| 154 |
|
| 155 |
### Discussion of Biases
|
| 156 |
|
|
|
|
| 157 |
|
| 158 |
### Other Known Limitations
|
| 159 |
|
|
|
|
| 172 |
### Citation Information
|
| 173 |
|
| 174 |
```
|
| 175 |
+
@inproceedings{lozhnikov2018stance,
|
| 176 |
+
title={Stance prediction for russian: data and analysis},
|
| 177 |
+
author={Lozhnikov, Nikita and Derczynski, Leon and Mazzara, Manuel},
|
| 178 |
+
booktitle={International Conference in Software Engineering for Defence Applications},
|
| 179 |
+
pages={176--186},
|
| 180 |
+
year={2018},
|
| 181 |
+
organization={Springer}
|
| 182 |
}
|
| 183 |
```
|
| 184 |
|
rustance.py
CHANGED
|
@@ -16,7 +16,7 @@
|
|
| 16 |
# Lint as: python3
|
| 17 |
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""
|
| 18 |
|
| 19 |
-
import
|
| 20 |
import os
|
| 21 |
|
| 22 |
import datasets
|
|
@@ -26,54 +26,42 @@ logger = datasets.logging.get_logger(__name__)
|
|
| 26 |
|
| 27 |
|
| 28 |
_CITATION = """\
|
| 29 |
-
@inproceedings{
|
| 30 |
-
title={
|
| 31 |
-
author={
|
| 32 |
-
booktitle={
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
}
|
| 35 |
"""
|
| 36 |
|
| 37 |
_DESCRIPTION = """\
|
| 38 |
-
This is a stance
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
spread across our information sources. In the past years, many NLP tasks have
|
| 42 |
-
been introduced in this area, with some systems reaching good results on
|
| 43 |
-
English language datasets. Existing AI based approaches for fighting
|
| 44 |
-
misinformation in literature suggest automatic stance detection as an integral
|
| 45 |
-
first step to success. Our paper aims at utilizing this progress made for
|
| 46 |
-
English to transfers that knowledge into other languages, which is a
|
| 47 |
-
non-trivial task due to the domain gap between English and the target
|
| 48 |
-
languages. We propose a black-box non-intrusive method that utilizes techniques
|
| 49 |
-
from Domain Adaptation to reduce the domain gap, without requiring any human
|
| 50 |
-
expertise in the target language, by leveraging low-quality data in both a
|
| 51 |
-
supervised and unsupervised manner. This allows us to rapidly achieve similar
|
| 52 |
-
results for stance detection for the Zulu language, the target language in
|
| 53 |
-
this work, as are found for English. We also provide a stance detection dataset
|
| 54 |
-
in the Zulu language.
|
| 55 |
"""
|
| 56 |
|
| 57 |
-
_URL = "
|
| 58 |
|
| 59 |
|
| 60 |
-
class
|
| 61 |
-
"""BuilderConfig for
|
| 62 |
|
| 63 |
def __init__(self, **kwargs):
|
| 64 |
-
"""BuilderConfig
|
| 65 |
|
| 66 |
Args:
|
| 67 |
**kwargs: keyword arguments forwarded to super.
|
| 68 |
"""
|
| 69 |
-
super(
|
| 70 |
|
| 71 |
|
| 72 |
-
class
|
| 73 |
-
"""
|
| 74 |
|
| 75 |
BUILDER_CONFIGS = [
|
| 76 |
-
|
| 77 |
]
|
| 78 |
|
| 79 |
def _info(self):
|
|
@@ -83,18 +71,19 @@ class ZuluStance(datasets.GeneratorBasedBuilder):
|
|
| 83 |
{
|
| 84 |
"id": datasets.Value("string"),
|
| 85 |
"text": datasets.Value("string"),
|
| 86 |
-
"
|
| 87 |
"stance": datasets.features.ClassLabel(
|
| 88 |
names=[
|
| 89 |
-
"
|
| 90 |
-
"
|
| 91 |
-
"
|
|
|
|
| 92 |
]
|
| 93 |
)
|
| 94 |
}
|
| 95 |
),
|
| 96 |
supervised_keys=None,
|
| 97 |
-
homepage="https://
|
| 98 |
citation=_CITATION,
|
| 99 |
)
|
| 100 |
|
|
@@ -109,12 +98,22 @@ class ZuluStance(datasets.GeneratorBasedBuilder):
|
|
| 109 |
def _generate_examples(self, filepath):
|
| 110 |
logger.info("⏳ Generating examples from = %s", filepath)
|
| 111 |
with open(filepath, encoding="utf-8") as f:
|
|
|
|
| 112 |
guid = 0
|
| 113 |
-
|
| 114 |
-
for instance in zustance_dataset:
|
| 115 |
instance["id"] = str(guid)
|
| 116 |
-
instance[
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
instance["stance"] = instance.pop("Stance")
|
|
|
|
| 119 |
yield guid, instance
|
| 120 |
guid += 1
|
|
|
|
| 16 |
# Lint as: python3
|
| 17 |
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""
|
| 18 |
|
| 19 |
+
import csv
|
| 20 |
import os
|
| 21 |
|
| 22 |
import datasets
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
_CITATION = """\
|
| 29 |
+
@inproceedings{lozhnikov2018stance,
|
| 30 |
+
title={Stance prediction for russian: data and analysis},
|
| 31 |
+
author={Lozhnikov, Nikita and Derczynski, Leon and Mazzara, Manuel},
|
| 32 |
+
booktitle={International Conference in Software Engineering for Defence Applications},
|
| 33 |
+
pages={176--186},
|
| 34 |
+
year={2018},
|
| 35 |
+
organization={Springer}
|
| 36 |
}
|
| 37 |
"""
|
| 38 |
|
| 39 |
_DESCRIPTION = """\
|
| 40 |
+
This is a stance prediction dataset in Russian. The dataset contains comments on news articles,
|
| 41 |
+
and rows are a comment, the title of the news article it responds to, and the stance of the comment
|
| 42 |
+
towards the article.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
"""
|
| 44 |
|
| 45 |
+
_URL = "rustance_dataset.csv"
|
| 46 |
|
| 47 |
|
| 48 |
+
class RuStanceConfig(datasets.BuilderConfig):
|
| 49 |
+
"""BuilderConfig for RuStance"""
|
| 50 |
|
| 51 |
def __init__(self, **kwargs):
|
| 52 |
+
"""BuilderConfig RuStance.
|
| 53 |
|
| 54 |
Args:
|
| 55 |
**kwargs: keyword arguments forwarded to super.
|
| 56 |
"""
|
| 57 |
+
super(RuStanceConfig, self).__init__(**kwargs)
|
| 58 |
|
| 59 |
|
| 60 |
+
class RuStance(datasets.GeneratorBasedBuilder):
|
| 61 |
+
"""RuStance dataset."""
|
| 62 |
|
| 63 |
BUILDER_CONFIGS = [
|
| 64 |
+
RuStanceConfig(name="rustance", version=datasets.Version("1.0.0"), description="Stance dataset in Russian"),
|
| 65 |
]
|
| 66 |
|
| 67 |
def _info(self):
|
|
|
|
| 71 |
{
|
| 72 |
"id": datasets.Value("string"),
|
| 73 |
"text": datasets.Value("string"),
|
| 74 |
+
"title": datasets.Value("string"),
|
| 75 |
"stance": datasets.features.ClassLabel(
|
| 76 |
names=[
|
| 77 |
+
"support",
|
| 78 |
+
"deny",
|
| 79 |
+
"query",
|
| 80 |
+
"comment",
|
| 81 |
]
|
| 82 |
)
|
| 83 |
}
|
| 84 |
),
|
| 85 |
supervised_keys=None,
|
| 86 |
+
homepage="https://link.springer.com/chapter/10.1007/978-3-030-14687-0_16",
|
| 87 |
citation=_CITATION,
|
| 88 |
)
|
| 89 |
|
|
|
|
| 98 |
def _generate_examples(self, filepath):
|
| 99 |
logger.info("⏳ Generating examples from = %s", filepath)
|
| 100 |
with open(filepath, encoding="utf-8") as f:
|
| 101 |
+
rustance_reader = csv.DictReader(f, delimiter=";", quotechar='"')
|
| 102 |
guid = 0
|
| 103 |
+
for instance in rustance_reader:
|
|
|
|
| 104 |
instance["id"] = str(guid)
|
| 105 |
+
if instance['Stance'] == "s":
|
| 106 |
+
instance['Stance'] = "support"
|
| 107 |
+
elif instance['Stance'] == "d":
|
| 108 |
+
instance['Stance'] = "deny"
|
| 109 |
+
elif instance['Stance'] == "q":
|
| 110 |
+
instance['Stance'] = "query"
|
| 111 |
+
elif instance['Stance'] == "c":
|
| 112 |
+
instance['Stance'] = "comment"
|
| 113 |
+
|
| 114 |
+
instance["text"] = instance.pop("Text")
|
| 115 |
+
instance["title"] = instance.pop("Title")
|
| 116 |
instance["stance"] = instance.pop("Stance")
|
| 117 |
+
|
| 118 |
yield guid, instance
|
| 119 |
guid += 1
|