Datasets:
Tasks:
Summarization
Sub-tasks:
news-articles-summarization
Languages:
Kazakh
Size:
100K<n<1M
ArXiv:
License:
File size: 5,424 Bytes
64fbfc0 ce765ed 64fbfc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# -*- coding: utf-8 -*-
import re, json, sys, subprocess
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
from tqdm import tqdm
#!pip install datasets==3.6.0
#
# ===== Параметры =====
BASE_MODEL = "google/gemma-3-4b-it"
MODEL_PATH = "talgatzh/gemma-finetuned-model2"
OUTPUT_FILE = "gemma_inference_results_from_multidomain_fixedzxcs555.jsonl"
MAX_NEW_TOKENS = 60
MAX_TEXTS = 20 # увеличь для более стабильной метрики (>=200)
# ===== ROUGE (установим при необходимости) =====
try:
import evaluate
except ImportError:
subprocess.check_call([sys.executable, "-m", "pip", "install", "-q", "evaluate"])
import evaluate
# ===== Модель и токенизатор =====
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True
).eval()
# pad_token для стабильности (у Gemma pad = eos)
if tokenizer.pad_token_id is None:
tokenizer.pad_token = tokenizer.eos_token
# ===== Утилиты =====
def is_kazakh(text: str) -> bool:
return any(c in text.lower() for c in "қәөүңғұһі")
_SENT_SPLIT = re.compile(r'(?<=[\.\!\?…])\s+|\n+')
def lead_n(text: str, n=3) -> str:
sents = [s.strip() for s in _SENT_SPLIT.split(text.strip()) if s.strip()]
return " ".join(sents[:n])
def build_chat_prompt(text: str) -> str:
instr = (
"Мақсат: Экстрактивті қысқаша мазмұн.\n"
"Ереже: Тек бастапқы мәтіндегі сөйлемдерді көшір. Өз сөзіңмен жазба. Синоним қолданба.\n"
"Мәтіннен тек 2–3 ең маңызды сөйлемді таңда да, сол күйінде жаз.\n"
"Формат: тек сөйлемдер, жаңа сөздер қоспа.\n\n"
"Мәтін:\n"
f"{text.strip()}\n\n"
"Қысқаша мазмұн:"
)
messages = [{"role": "user", "content": instr}]
# Правильный chat-template для Gemma-IT
return tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# ===== Данные =====
dataset = load_dataset("kz-transformers/multidomain-kazakh-dataset",
split="train", streaming=True)
INPUT_TEXTS = []
for ex in dataset:
txt = (ex.get("text") or "").strip()
if is_kazakh(txt) and len(txt.split()) > 20:
INPUT_TEXTS.append(txt)
if len(INPUT_TEXTS) >= MAX_TEXTS:
break
print(f"✔ Отобрано {len(INPUT_TEXTS)} казахских текстов из multidomain")
# ===== Генерация =====
results, preds, refs = [], [], []
for text in tqdm(INPUT_TEXTS, desc="Generating summaries"):
prompt_text = build_chat_prompt(text)
toks = tokenizer(prompt_text, return_tensors="pt", truncation=True, max_length=2048)
toks = {k: v.to(model.device) for k, v in toks.items()}
with torch.no_grad():
out = model.generate(
**toks,
max_new_tokens=MAX_NEW_TOKENS,
do_sample=False,
temperature=0.0,
repetition_penalty=1.05,
no_repeat_ngram_size=6,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
use_cache=True,
)
# === Берём ТОЛЬКО новые токены после входа ===
input_len = toks["input_ids"].shape[1]
gen_ids = out[0, input_len:]
generated = tokenizer.decode(gen_ids, skip_special_tokens=True).strip()
# Чистим возможные «утечки» ролей/маркеров
for bad in ("model", "<start_of_turn>", "<end_of_turn>"):
if generated.lower().startswith(bad):
generated = generated[len(bad):].lstrip(": ").strip()
generated = generated.replace(bad, "").strip()
# Fallback: если пусто — берём первые 2–3 предложения исходника
if not generated:
generated = lead_n(text, n=3)
reference = lead_n(text, n=3)
results.append({"text": text, "summary": generated, "reference": reference})
preds.append(generated)
refs.append(reference)
# ===== Сохранение =====
with open(OUTPUT_FILE, "w", encoding="utf-8") as f:
for r in results:
f.write(json.dumps(r, ensure_ascii=False) + "\n")
print(f"✅ Сохранено {len(results)} суммаризаций → {OUTPUT_FILE}")
# ===== ROUGE к Lead-3 (прокси для быстрой диагностики) =====
rouge = evaluate.load("rouge")
scores = rouge.compute(predictions=preds, references=refs, use_stemmer=True)
scores_pct = {k: round(v * 100, 2) for k, v in scores.items()}
print("🔎 ROUGE vs Lead-3:")
for k in ("rouge1", "rouge2", "rougeL", "rougeLsum"):
print(f"{k.upper()}: {scores_pct.get(k, 0)}%")
# ===== Быстрый дебаг первых 3 пар =====
for i in range(min(3, len(results))):
print("\n--- SAMPLE", i+1, "---")
print("PRED:", results[i]["summary"])
print("REF :", results[i]["reference"])
|