Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -9,6 +9,11 @@ language:
|
|
| 9 |
- zh
|
| 10 |
- ar
|
| 11 |
- hi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
license: openrail++
|
| 13 |
size_categories:
|
| 14 |
- 10K<n<100K
|
|
@@ -103,24 +108,36 @@ configs:
|
|
| 103 |
path: data/ja-*
|
| 104 |
---
|
| 105 |
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
Namely, for each language, we provide 5k subparts of the datasets -- 2.5k toxic and 2.5k non-toxic samples.
|
| 108 |
|
| 109 |
The list of original sources:
|
| 110 |
* English: [Jigsaw](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge), [Unitary AI Toxicity Dataset](https://github.com/unitaryai/detoxify)
|
| 111 |
* Russian: [Russian Language Toxic Comments](https://www.kaggle.com/datasets/blackmoon/russian-language-toxic-comments), [Toxic Russian Comments](https://www.kaggle.com/datasets/alexandersemiletov/toxic-russian-comments)
|
| 112 |
-
* Ukrainian:
|
| 113 |
* Spanish: [CLANDESTINO, the Spanish toxic language dataset](https://github.com/microsoft/Clandestino/tree/main)
|
| 114 |
* German: [DeTox-Dataset](https://github.com/hdaSprachtechnologie/detox), [GemEval 2018, 2021](https://aclanthology.org/2021.germeval-1.1/)
|
| 115 |
* Amhairc: [Amharic Hate Speech](https://github.com/uhh-lt/AmharicHateSpeech)
|
| 116 |
* Arabic: [OSACT4](https://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/)
|
| 117 |
* Hindi: [Hostility Detection Dataset in Hindi](https://competitions.codalab.org/competitions/26654#learn_the_details-dataset), [Overview of the HASOC track at FIRE 2019: Hate Speech and Offensive Content Identification in Indo-European Languages](https://dl.acm.org/doi/pdf/10.1145/3368567.3368584?download=true)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
All credits go to the authors of the original
|
| 120 |
|
| 121 |
## Citation
|
| 122 |
If you would like to acknowledge our work, please, cite the following manuscripts:
|
| 123 |
|
|
|
|
|
|
|
| 124 |
```
|
| 125 |
@inproceedings{dementieva2024overview,
|
| 126 |
title={Overview of the Multilingual Text Detoxification Task at PAN 2024},
|
|
|
|
| 9 |
- zh
|
| 10 |
- ar
|
| 11 |
- hi
|
| 12 |
+
- it
|
| 13 |
+
- fr
|
| 14 |
+
- he
|
| 15 |
+
- ja
|
| 16 |
+
- tt
|
| 17 |
license: openrail++
|
| 18 |
size_categories:
|
| 19 |
- 10K<n<100K
|
|
|
|
| 108 |
path: data/ja-*
|
| 109 |
---
|
| 110 |
|
| 111 |
+
# Multilingual Toxicity Detection Dataset
|
| 112 |
+
|
| 113 |
+
**[2025]** We extend our binary toxicity classification dataset to **more languages**! Now also covered: Italian, French, Hebrew, Hindglish, Japanese, Tatar. The data is prepared for [TextDetox 2025](https://pan.webis.de/clef25/pan25-web/text-detoxification.html) shared task.
|
| 114 |
+
|
| 115 |
+
**[2024]** For the shared task [TextDetox 2024](https://pan.webis.de/clef24/pan24-web/text-detoxification.html), we provide a compilation of binary toxicity classification datasets for each language.
|
| 116 |
Namely, for each language, we provide 5k subparts of the datasets -- 2.5k toxic and 2.5k non-toxic samples.
|
| 117 |
|
| 118 |
The list of original sources:
|
| 119 |
* English: [Jigsaw](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge), [Unitary AI Toxicity Dataset](https://github.com/unitaryai/detoxify)
|
| 120 |
* Russian: [Russian Language Toxic Comments](https://www.kaggle.com/datasets/blackmoon/russian-language-toxic-comments), [Toxic Russian Comments](https://www.kaggle.com/datasets/alexandersemiletov/toxic-russian-comments)
|
| 121 |
+
* Ukrainian: [ours](https://huggingface.co/datasets/ukr-detect/ukr-toxicity-dataset)
|
| 122 |
* Spanish: [CLANDESTINO, the Spanish toxic language dataset](https://github.com/microsoft/Clandestino/tree/main)
|
| 123 |
* German: [DeTox-Dataset](https://github.com/hdaSprachtechnologie/detox), [GemEval 2018, 2021](https://aclanthology.org/2021.germeval-1.1/)
|
| 124 |
* Amhairc: [Amharic Hate Speech](https://github.com/uhh-lt/AmharicHateSpeech)
|
| 125 |
* Arabic: [OSACT4](https://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/)
|
| 126 |
* Hindi: [Hostility Detection Dataset in Hindi](https://competitions.codalab.org/competitions/26654#learn_the_details-dataset), [Overview of the HASOC track at FIRE 2019: Hate Speech and Offensive Content Identification in Indo-European Languages](https://dl.acm.org/doi/pdf/10.1145/3368567.3368584?download=true)
|
| 127 |
+
* Italian: [AMI](https://github.com/dnozza/ami2020), [HODI](https://github.com/HODI-EVALITA/HODI_2023), [Jigsaw Multilingual Toxic Comment](https://www.kaggle.com/competitions/jigsaw-multilingual-toxic-comment-classification/overview)
|
| 128 |
+
* French: []
|
| 129 |
+
* Hebrew: [Hebrew Offensive Language Dataset](https://github.com/NataliaVanetik/HebrewOffensiveLanguageDatasetForTheDetoxificationProject/blob/main/OLaH-dataset-filtered.xlsx)
|
| 130 |
+
* Hinglish: []
|
| 131 |
+
* Japanese: [filtered](https://huggingface.co/datasets/sobamchan/ja-toxic-text-classification-open2ch) [2chan posts](https://huggingface.co/datasets/p1atdev/open2ch) by Perspective API;
|
| 132 |
+
* Tatar: ours.
|
| 133 |
|
| 134 |
+
All credits go to the authors of the original corpora.
|
| 135 |
|
| 136 |
## Citation
|
| 137 |
If you would like to acknowledge our work, please, cite the following manuscripts:
|
| 138 |
|
| 139 |
+
**[2024]**
|
| 140 |
+
|
| 141 |
```
|
| 142 |
@inproceedings{dementieva2024overview,
|
| 143 |
title={Overview of the Multilingual Text Detoxification Task at PAN 2024},
|