Datasets:
image
imagewidth (px) 512
512
| label
imagewidth (px) 512
512
| image_id
stringlengths 14
14
| split
stringclasses 1
value | file_name
stringlengths 18
18
| relative_path
stringlengths 30
30
| sequence_id
int64 0
0
|
|---|---|---|---|---|---|---|
seq_5_frame149
|
train
|
seq_5_frame149.bmp
|
train/image/seq_5_frame149.bmp
| 0
|
||
seq_6_frame174
|
train
|
seq_6_frame174.bmp
|
train/image/seq_6_frame174.bmp
| 0
|
||
seq_7_frame013
|
train
|
seq_7_frame013.bmp
|
train/image/seq_7_frame013.bmp
| 0
|
||
seq_4_frame127
|
train
|
seq_4_frame127.bmp
|
train/image/seq_4_frame127.bmp
| 0
|
||
seq_6_frame173
|
train
|
seq_6_frame173.bmp
|
train/image/seq_6_frame173.bmp
| 0
|
||
seq_3_frame128
|
train
|
seq_3_frame128.bmp
|
train/image/seq_3_frame128.bmp
| 0
|
||
seq_6_frame122
|
train
|
seq_6_frame122.bmp
|
train/image/seq_6_frame122.bmp
| 0
|
||
seq_3_frame098
|
train
|
seq_3_frame098.bmp
|
train/image/seq_3_frame098.bmp
| 0
|
||
seq_1_frame206
|
train
|
seq_1_frame206.bmp
|
train/image/seq_1_frame206.bmp
| 0
|
||
seq_8_frame013
|
train
|
seq_8_frame013.bmp
|
train/image/seq_8_frame013.bmp
| 0
|
||
seq_2_frame111
|
train
|
seq_2_frame111.bmp
|
train/image/seq_2_frame111.bmp
| 0
|
||
seq_5_frame199
|
train
|
seq_5_frame199.bmp
|
train/image/seq_5_frame199.bmp
| 0
|
||
seq_4_frame145
|
train
|
seq_4_frame145.bmp
|
train/image/seq_4_frame145.bmp
| 0
|
||
seq_7_frame051
|
train
|
seq_7_frame051.bmp
|
train/image/seq_7_frame051.bmp
| 0
|
||
seq_8_frame038
|
train
|
seq_8_frame038.bmp
|
train/image/seq_8_frame038.bmp
| 0
|
||
seq_3_frame217
|
train
|
seq_3_frame217.bmp
|
train/image/seq_3_frame217.bmp
| 0
|
||
seq_4_frame184
|
train
|
seq_4_frame184.bmp
|
train/image/seq_4_frame184.bmp
| 0
|
||
seq_1_frame186
|
train
|
seq_1_frame186.bmp
|
train/image/seq_1_frame186.bmp
| 0
|
||
seq_2_frame044
|
train
|
seq_2_frame044.bmp
|
train/image/seq_2_frame044.bmp
| 0
|
||
seq_8_frame149
|
train
|
seq_8_frame149.bmp
|
train/image/seq_8_frame149.bmp
| 0
|
||
seq_7_frame131
|
train
|
seq_7_frame131.bmp
|
train/image/seq_7_frame131.bmp
| 0
|
||
seq_7_frame110
|
train
|
seq_7_frame110.bmp
|
train/image/seq_7_frame110.bmp
| 0
|
||
seq_8_frame086
|
train
|
seq_8_frame086.bmp
|
train/image/seq_8_frame086.bmp
| 0
|
||
seq_4_frame221
|
train
|
seq_4_frame221.bmp
|
train/image/seq_4_frame221.bmp
| 0
|
||
seq_6_frame115
|
train
|
seq_6_frame115.bmp
|
train/image/seq_6_frame115.bmp
| 0
|
||
seq_5_frame220
|
train
|
seq_5_frame220.bmp
|
train/image/seq_5_frame220.bmp
| 0
|
||
seq_5_frame041
|
train
|
seq_5_frame041.bmp
|
train/image/seq_5_frame041.bmp
| 0
|
||
seq_3_frame174
|
train
|
seq_3_frame174.bmp
|
train/image/seq_3_frame174.bmp
| 0
|
||
seq_5_frame200
|
train
|
seq_5_frame200.bmp
|
train/image/seq_5_frame200.bmp
| 0
|
||
seq_4_frame011
|
train
|
seq_4_frame011.bmp
|
train/image/seq_4_frame011.bmp
| 0
|
||
seq_5_frame081
|
train
|
seq_5_frame081.bmp
|
train/image/seq_5_frame081.bmp
| 0
|
||
seq_1_frame049
|
train
|
seq_1_frame049.bmp
|
train/image/seq_1_frame049.bmp
| 0
|
||
seq_4_frame198
|
train
|
seq_4_frame198.bmp
|
train/image/seq_4_frame198.bmp
| 0
|
||
seq_1_frame068
|
train
|
seq_1_frame068.bmp
|
train/image/seq_1_frame068.bmp
| 0
|
||
seq_1_frame152
|
train
|
seq_1_frame152.bmp
|
train/image/seq_1_frame152.bmp
| 0
|
||
seq_5_frame015
|
train
|
seq_5_frame015.bmp
|
train/image/seq_5_frame015.bmp
| 0
|
||
seq_6_frame160
|
train
|
seq_6_frame160.bmp
|
train/image/seq_6_frame160.bmp
| 0
|
||
seq_3_frame114
|
train
|
seq_3_frame114.bmp
|
train/image/seq_3_frame114.bmp
| 0
|
||
seq_2_frame071
|
train
|
seq_2_frame071.bmp
|
train/image/seq_2_frame071.bmp
| 0
|
||
seq_7_frame021
|
train
|
seq_7_frame021.bmp
|
train/image/seq_7_frame021.bmp
| 0
|
||
seq_6_frame147
|
train
|
seq_6_frame147.bmp
|
train/image/seq_6_frame147.bmp
| 0
|
||
seq_1_frame096
|
train
|
seq_1_frame096.bmp
|
train/image/seq_1_frame096.bmp
| 0
|
||
seq_7_frame122
|
train
|
seq_7_frame122.bmp
|
train/image/seq_7_frame122.bmp
| 0
|
||
seq_5_frame136
|
train
|
seq_5_frame136.bmp
|
train/image/seq_5_frame136.bmp
| 0
|
||
seq_4_frame066
|
train
|
seq_4_frame066.bmp
|
train/image/seq_4_frame066.bmp
| 0
|
||
seq_3_frame104
|
train
|
seq_3_frame104.bmp
|
train/image/seq_3_frame104.bmp
| 0
|
||
seq_2_frame141
|
train
|
seq_2_frame141.bmp
|
train/image/seq_2_frame141.bmp
| 0
|
||
seq_7_frame155
|
train
|
seq_7_frame155.bmp
|
train/image/seq_7_frame155.bmp
| 0
|
||
seq_3_frame169
|
train
|
seq_3_frame169.bmp
|
train/image/seq_3_frame169.bmp
| 0
|
||
seq_2_frame009
|
train
|
seq_2_frame009.bmp
|
train/image/seq_2_frame009.bmp
| 0
|
||
seq_3_frame125
|
train
|
seq_3_frame125.bmp
|
train/image/seq_3_frame125.bmp
| 0
|
||
seq_1_frame090
|
train
|
seq_1_frame090.bmp
|
train/image/seq_1_frame090.bmp
| 0
|
||
seq_2_frame062
|
train
|
seq_2_frame062.bmp
|
train/image/seq_2_frame062.bmp
| 0
|
||
seq_1_frame224
|
train
|
seq_1_frame224.bmp
|
train/image/seq_1_frame224.bmp
| 0
|
||
seq_7_frame191
|
train
|
seq_7_frame191.bmp
|
train/image/seq_7_frame191.bmp
| 0
|
||
seq_4_frame045
|
train
|
seq_4_frame045.bmp
|
train/image/seq_4_frame045.bmp
| 0
|
||
seq_8_frame054
|
train
|
seq_8_frame054.bmp
|
train/image/seq_8_frame054.bmp
| 0
|
||
seq_1_frame081
|
train
|
seq_1_frame081.bmp
|
train/image/seq_1_frame081.bmp
| 0
|
||
seq_4_frame037
|
train
|
seq_4_frame037.bmp
|
train/image/seq_4_frame037.bmp
| 0
|
||
seq_8_frame203
|
train
|
seq_8_frame203.bmp
|
train/image/seq_8_frame203.bmp
| 0
|
||
seq_6_frame079
|
train
|
seq_6_frame079.bmp
|
train/image/seq_6_frame079.bmp
| 0
|
||
seq_8_frame167
|
train
|
seq_8_frame167.bmp
|
train/image/seq_8_frame167.bmp
| 0
|
||
seq_2_frame110
|
train
|
seq_2_frame110.bmp
|
train/image/seq_2_frame110.bmp
| 0
|
||
seq_7_frame188
|
train
|
seq_7_frame188.bmp
|
train/image/seq_7_frame188.bmp
| 0
|
||
seq_7_frame196
|
train
|
seq_7_frame196.bmp
|
train/image/seq_7_frame196.bmp
| 0
|
||
seq_3_frame193
|
train
|
seq_3_frame193.bmp
|
train/image/seq_3_frame193.bmp
| 0
|
||
seq_5_frame028
|
train
|
seq_5_frame028.bmp
|
train/image/seq_5_frame028.bmp
| 0
|
||
seq_4_frame109
|
train
|
seq_4_frame109.bmp
|
train/image/seq_4_frame109.bmp
| 0
|
||
seq_8_frame068
|
train
|
seq_8_frame068.bmp
|
train/image/seq_8_frame068.bmp
| 0
|
||
seq_3_frame100
|
train
|
seq_3_frame100.bmp
|
train/image/seq_3_frame100.bmp
| 0
|
||
seq_8_frame002
|
train
|
seq_8_frame002.bmp
|
train/image/seq_8_frame002.bmp
| 0
|
||
seq_3_frame173
|
train
|
seq_3_frame173.bmp
|
train/image/seq_3_frame173.bmp
| 0
|
||
seq_8_frame118
|
train
|
seq_8_frame118.bmp
|
train/image/seq_8_frame118.bmp
| 0
|
||
seq_1_frame164
|
train
|
seq_1_frame164.bmp
|
train/image/seq_1_frame164.bmp
| 0
|
||
seq_2_frame151
|
train
|
seq_2_frame151.bmp
|
train/image/seq_2_frame151.bmp
| 0
|
||
seq_1_frame223
|
train
|
seq_1_frame223.bmp
|
train/image/seq_1_frame223.bmp
| 0
|
||
seq_4_frame141
|
train
|
seq_4_frame141.bmp
|
train/image/seq_4_frame141.bmp
| 0
|
||
seq_4_frame143
|
train
|
seq_4_frame143.bmp
|
train/image/seq_4_frame143.bmp
| 0
|
||
seq_6_frame039
|
train
|
seq_6_frame039.bmp
|
train/image/seq_6_frame039.bmp
| 0
|
||
seq_8_frame021
|
train
|
seq_8_frame021.bmp
|
train/image/seq_8_frame021.bmp
| 0
|
||
seq_4_frame035
|
train
|
seq_4_frame035.bmp
|
train/image/seq_4_frame035.bmp
| 0
|
||
seq_2_frame137
|
train
|
seq_2_frame137.bmp
|
train/image/seq_2_frame137.bmp
| 0
|
||
seq_5_frame030
|
train
|
seq_5_frame030.bmp
|
train/image/seq_5_frame030.bmp
| 0
|
||
seq_5_frame163
|
train
|
seq_5_frame163.bmp
|
train/image/seq_5_frame163.bmp
| 0
|
||
seq_8_frame097
|
train
|
seq_8_frame097.bmp
|
train/image/seq_8_frame097.bmp
| 0
|
||
seq_7_frame205
|
train
|
seq_7_frame205.bmp
|
train/image/seq_7_frame205.bmp
| 0
|
||
seq_5_frame087
|
train
|
seq_5_frame087.bmp
|
train/image/seq_5_frame087.bmp
| 0
|
||
seq_4_frame061
|
train
|
seq_4_frame061.bmp
|
train/image/seq_4_frame061.bmp
| 0
|
||
seq_3_frame056
|
train
|
seq_3_frame056.bmp
|
train/image/seq_3_frame056.bmp
| 0
|
||
seq_7_frame153
|
train
|
seq_7_frame153.bmp
|
train/image/seq_7_frame153.bmp
| 0
|
||
seq_5_frame124
|
train
|
seq_5_frame124.bmp
|
train/image/seq_5_frame124.bmp
| 0
|
||
seq_7_frame119
|
train
|
seq_7_frame119.bmp
|
train/image/seq_7_frame119.bmp
| 0
|
||
seq_2_frame201
|
train
|
seq_2_frame201.bmp
|
train/image/seq_2_frame201.bmp
| 0
|
||
seq_5_frame064
|
train
|
seq_5_frame064.bmp
|
train/image/seq_5_frame064.bmp
| 0
|
||
seq_7_frame147
|
train
|
seq_7_frame147.bmp
|
train/image/seq_7_frame147.bmp
| 0
|
||
seq_2_frame206
|
train
|
seq_2_frame206.bmp
|
train/image/seq_2_frame206.bmp
| 0
|
||
seq_3_frame197
|
train
|
seq_3_frame197.bmp
|
train/image/seq_3_frame197.bmp
| 0
|
||
seq_6_frame113
|
train
|
seq_6_frame113.bmp
|
train/image/seq_6_frame113.bmp
| 0
|
||
seq_7_frame003
|
train
|
seq_7_frame003.bmp
|
train/image/seq_7_frame003.bmp
| 0
|
||
seq_6_frame221
|
train
|
seq_6_frame221.bmp
|
train/image/seq_6_frame221.bmp
| 0
|
Dataset Card for Endovis2017
Dataset Description
Dataset Summary
The Endovis2017 dataset contains preprocessed data for surgical instrument segmentation in robotic endoscopic procedures. This dataset was part of the MICCAI 2017 EndoVis Challenge for robotic instrument segmentation.
The dataset includes high-resolution images from the da Vinci surgical system along with pixel-level segmentation annotations for surgical instruments. It is designed for training and evaluating computer vision models for surgical scene understanding and instrument tracking.
Supported Tasks
- Image Segmentation: Pixel-level segmentation of surgical instruments in endoscopic images
- Medical Image Analysis: Understanding surgical scenes and instrument types
- Computer-Assisted Surgery: Real-time instrument detection and tracking
Languages
Not applicable (image dataset)
Dataset Structure
Data Instances
Each instance in the dataset contains:
{
'image': PIL.Image, # RGB endoscopic image
'label': PIL.Image, # Segmentation mask (grayscale)
'image_id': str, # Unique identifier
'file_name': str, # Original filename
'split': str, # 'train' or 'val'
'relative_path': str, # Path relative to dataset root
'sequence_id': int # Sequence/video ID (0 for train, 1-4 for val)
}
Data Fields
image: RGB image of size 640×480 or similar (varies by sequence)label: Grayscale segmentation mask matching image dimensionsimage_id: Unique string identifier for the imagefile_name: Original filename (e.g., "frame000.png")split: Dataset split ("train" or "val")relative_path: Path relative to dataset root directorysequence_id: Integer identifying the surgical sequence (0 for training, 1-4 for validation sequences)
Data Splits
| Split | Examples |
|---|---|
| train | 1,800 |
| val | 901 |
| Total | 2,701 |
The training set contains images from multiple surgical procedures, while the validation set is organized into 4 different sequences (val1-val4) representing different surgical scenarios.
Dataset Creation
Source Data
The dataset originates from the 2017 Robotic Instrument Segmentation Challenge held at MICCAI 2017.
Original Source: Zenodo Repository
Data Collection
Images were captured using the da Vinci surgical system during robotic-assisted surgical procedures. The dataset includes various instrument types and surgical scenarios to ensure model generalization.
Annotations
Pixel-level segmentation masks were manually annotated by experts. The annotations include:
- Binary segmentation (instrument vs. background)
- Part-level segmentation (shaft, wrist, claspers)
- Instrument type classification
Personal and Sensitive Information
The dataset contains surgical video frames but does not include patient-identifiable information. All images show only the surgical field and instruments, not patients.
Considerations for Using the Data
Social Impact
This dataset enables research in computer-assisted surgery and robotic surgery, which can potentially:
- Improve surgical outcomes through better instrument tracking
- Enable automated surgical skill assessment
- Advance autonomous surgical robotics
Bias and Limitations
- Limited to da Vinci surgical system (may not generalize to other platforms)
- Contains only certain types of surgical procedures
- Annotation quality may vary across different sequences
- Dataset size is relatively small compared to natural image datasets
Recommendations
Users should:
- Test models on multiple surgical systems if deploying in production
- Consider domain adaptation techniques for different surgical contexts
- Validate performance on institution-specific data before clinical use
- Be aware of potential biases toward specific instrument types and surgical scenarios
Usage
Loading the Dataset
from datasets import load_dataset
# Download and cache the full dataset
dataset = load_dataset("tyluan/Endovis2017")
# Access splits
train_data = dataset['train']
val_data = dataset['val']
# Get a sample
sample = train_data[0]
image = sample['image'] # PIL Image
label = sample['label'] # PIL Image (segmentation mask)
print(f"Image size: {image.size}")
print(f"Label size: {label.size}")
Streaming Mode (No Download)
For quick exploration without downloading the entire dataset:
from datasets import load_dataset
# Stream the dataset
dataset = load_dataset("tyluan/Endovis2017", streaming=True)
# Iterate over samples
for sample in dataset['train']:
image = sample['image']
label = sample['label']
# Process sample...
break # Just show first sample
Using with PyTorch
from datasets import load_dataset
from torch.utils.data import DataLoader
from torchvision import transforms
# Load dataset
dataset = load_dataset("tyluan/Endovis2017", split="train")
# Define transforms
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
# Apply transforms
def apply_transforms(example):
example['image'] = transform(example['image'])
example['label'] = transform(example['label'])
return example
dataset = dataset.map(apply_transforms)
dataset.set_format(type='torch', columns=['image', 'label'])
# Create DataLoader
dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
# Iterate
for batch in dataloader:
images = batch['image'] # Shape: [8, 3, 256, 256]
labels = batch['label'] # Shape: [8, 1, 256, 256]
# Train your model...
break
Integration with EasyMedSeg
This dataset is part of the EasyMedSeg framework:
from dataloader.image import Endovis2017Dataset
# Download mode (recommended)
dataset = Endovis2017Dataset(
mode='download',
split='train',
hf_repo_id='tyluan/Endovis2017'
)
# Streaming mode
from dataloader.image import Endovis2017StreamingDataset
streaming_dataset = Endovis2017StreamingDataset(
split='val',
shuffle=True
)
Additional Information
Dataset Curators
Original dataset curated by the MICCAI 2017 EndoVis Challenge organizers.
HuggingFace version prepared by the EasyMedSeg team.
Licensing Information
This dataset is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).
When using this dataset, you must:
- Give appropriate credit to the original authors
- Provide a link to the license: https://creativecommons.org/licenses/by/4.0/
- Indicate if changes were made
Citation Information
If you use this dataset in your research, please cite:
@article{allan2019endovis,
title={2017 Robotic Instrument Segmentation Challenge},
author={Allan, Max and Shvets, Alex and Kurmann, Thomas and Zhang, Zichen and Duggal, Rahul and Su, Yun-Hsuan and Rieke, Nicola and Laina, Iro and Kalavakonda, Niveditha and Bodenstedt, Sebastian and others},
journal={arXiv preprint arXiv:1902.06426},
year={2019}
}
Contributions
Thanks to:
- MICCAI 2017 EndoVis Challenge organizers for creating the dataset
- Original annotators for high-quality segmentation masks
- EasyMedSeg team for preparing the HuggingFace version
Contact
For questions or issues with this HuggingFace version, please open an issue in the EasyMedSeg repository.
For questions about the original dataset, refer to the challenge website or the Zenodo repository.
References
- Downloads last month
- 100