|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import xml.etree.ElementTree as ET | 
					
						
						|  | from pathlib import Path | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @Article{Sharjeel2016, | 
					
						
						|  | author="Sharjeel, Muhammad | 
					
						
						|  | and Nawab, Rao Muhammad Adeel | 
					
						
						|  | and Rayson, Paul", | 
					
						
						|  | title="COUNTER: corpus of Urdu news text reuse", | 
					
						
						|  | journal="Language Resources and Evaluation", | 
					
						
						|  | year="2016", | 
					
						
						|  | pages="1--27", | 
					
						
						|  | issn="1574-0218", | 
					
						
						|  | doi="10.1007/s10579-016-9367-2", | 
					
						
						|  | url="http://dx.doi.org/10.1007/s10579-016-9367-2" | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | The COrpus of Urdu News TExt Reuse (COUNTER) corpus contains 1200 documents with real examples of text reuse from the field of journalism. It has been manually annotated at document level with three levels of reuse: wholly derived, partially derived and non derived. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "http://ucrel.lancs.ac.uk/textreuse/counter.php" | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = ( | 
					
						
						|  | "The corpus is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. " | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | _DOWNLOAD_URL = "http://ucrel.lancs.ac.uk/textreuse/COUNTER.zip" | 
					
						
						|  |  | 
					
						
						|  | _NUM_EXAMPLES = 600 | 
					
						
						|  |  | 
					
						
						|  | _CLASS_NAME_MAP = {"WD": "wholly_derived", "PD": "partially_derived", "ND": "not_derived"} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Counter(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """Corpus of Urdu News Text Reuse""" | 
					
						
						|  |  | 
					
						
						|  | VERSION = datasets.Version("1.0.0") | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "source": { | 
					
						
						|  | "filename": datasets.Value("string"), | 
					
						
						|  | "headline": datasets.Value("string"), | 
					
						
						|  | "body": datasets.Value("string"), | 
					
						
						|  | "total_number_of_words": datasets.Value("int64"), | 
					
						
						|  | "total_number_of_sentences": datasets.Value("int64"), | 
					
						
						|  | "number_of_words_with_swr": datasets.Value("int64"), | 
					
						
						|  | "newspaper": datasets.Value("string"), | 
					
						
						|  | "newsdate": datasets.Value("string"), | 
					
						
						|  | "domain": datasets.ClassLabel( | 
					
						
						|  | names=[ | 
					
						
						|  | "business", | 
					
						
						|  | "sports", | 
					
						
						|  | "national", | 
					
						
						|  | "foreign", | 
					
						
						|  | "showbiz", | 
					
						
						|  | ] | 
					
						
						|  | ), | 
					
						
						|  | "classification": datasets.ClassLabel( | 
					
						
						|  | names=["wholly_derived", "partially_derived", "not_derived"] | 
					
						
						|  | ), | 
					
						
						|  | }, | 
					
						
						|  | "derived": { | 
					
						
						|  | "filename": datasets.Value("string"), | 
					
						
						|  | "headline": datasets.Value("string"), | 
					
						
						|  | "body": datasets.Value("string"), | 
					
						
						|  | "total_number_of_words": datasets.Value("int64"), | 
					
						
						|  | "total_number_of_sentences": datasets.Value("int64"), | 
					
						
						|  | "number_of_words_with_swr": datasets.Value("int64"), | 
					
						
						|  | "newspaper": datasets.Value("string"), | 
					
						
						|  | "newsdate": datasets.Value("string"), | 
					
						
						|  | "domain": datasets.ClassLabel( | 
					
						
						|  | names=[ | 
					
						
						|  | "business", | 
					
						
						|  | "sports", | 
					
						
						|  | "national", | 
					
						
						|  | "foreign", | 
					
						
						|  | "showbiz", | 
					
						
						|  | ] | 
					
						
						|  | ), | 
					
						
						|  | "classification": datasets.ClassLabel( | 
					
						
						|  | names=["wholly_derived", "partially_derived", "not_derived"] | 
					
						
						|  | ), | 
					
						
						|  | }, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=features, | 
					
						
						|  | supervised_keys=None, | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  | license=_LICENSE, | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | """Returns SplitGenerators.""" | 
					
						
						|  | data_dir = dl_manager.download_and_extract(_DOWNLOAD_URL) | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TRAIN, | 
					
						
						|  | gen_kwargs={"data_dir": data_dir}, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, data_dir): | 
					
						
						|  | """Yields examples.""" | 
					
						
						|  |  | 
					
						
						|  | def parse_file(file): | 
					
						
						|  | tree = ET.parse(file) | 
					
						
						|  | root = tree.getroot() | 
					
						
						|  | attributes = root.attrib | 
					
						
						|  | headline = root.find("headline").text | 
					
						
						|  | body = root.find("body").text | 
					
						
						|  | parsed = { | 
					
						
						|  | "filename": attributes["filename"], | 
					
						
						|  | "headline": headline, | 
					
						
						|  | "body": body, | 
					
						
						|  | "total_number_of_words": int(attributes["totalnoofwords"]), | 
					
						
						|  | "total_number_of_sentences": int(attributes["totalnoofsentences"]), | 
					
						
						|  | "number_of_words_with_swr": int(attributes["noofwordswithSWR"]), | 
					
						
						|  | "newspaper": attributes["newspaper"], | 
					
						
						|  | "newsdate": attributes["newsdate"], | 
					
						
						|  | "domain": attributes["domain"], | 
					
						
						|  | "classification": _CLASS_NAME_MAP[attributes["classification"]], | 
					
						
						|  | } | 
					
						
						|  | return parsed | 
					
						
						|  |  | 
					
						
						|  | base_path = Path(data_dir) | 
					
						
						|  | base_path = base_path / "COUNTER" | 
					
						
						|  | files = sorted(base_path.glob(r"[0-9][0-9][0-9][0-9].xml")) | 
					
						
						|  | for _id, file in enumerate(files): | 
					
						
						|  | example = {} | 
					
						
						|  | with file.open(encoding="utf-8") as f: | 
					
						
						|  | source = parse_file(f) | 
					
						
						|  | example["source"] = source | 
					
						
						|  |  | 
					
						
						|  | if file.stem == "0032": | 
					
						
						|  | derived_file = base_path / (file.stem + "P" + file.suffix) | 
					
						
						|  | else: | 
					
						
						|  | derived_file = base_path / (file.stem + "p" + file.suffix) | 
					
						
						|  | with derived_file.open(encoding="utf-8") as f: | 
					
						
						|  | derived = parse_file(f) | 
					
						
						|  | example["derived"] = derived | 
					
						
						|  | yield _id, example | 
					
						
						|  |  |