File size: 20,308 Bytes
			
			| fab5e6e b2a28f3 dace8e2 fab5e6e b2a28f3 fab5e6e 123f376 fab5e6e a9bc1eb fab5e6e 123f376 e69f406 fab5e6e 123f376 e69f406 123f376 fab5e6e 123f376 fab5e6e e69f406 a9bc1eb fab5e6e e69f406 123f376 e69f406 123f376 e69f406 123f376 e69f406 123f376 fab5e6e | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 | # /// script
# requires-python = ">=3.11"
# dependencies = [
#     "datasets",
#     "huggingface-hub[hf_transfer]",
#     "pillow",
#     "torch",
#     "torchvision",
#     "transformers==4.46.3",
#     "tokenizers==0.20.3",
#     "tqdm",
#     "addict",
#     "matplotlib",
#     "einops",
#     "easydict",
# ]
#
# ///
"""
Convert document images to markdown using DeepSeek-OCR with Transformers.
This script processes images through the DeepSeek-OCR model to extract
text and structure as markdown, using the official Transformers API.
Features:
- Multiple resolution modes (Tiny/Small/Base/Large/Gundam)
- LaTeX equation recognition
- Table extraction and formatting
- Document structure preservation
- Image grounding and descriptions
- Multilingual support
Note: This script processes images sequentially (no batching) using the
official transformers API. It's slower than vLLM-based scripts but uses
the well-supported official implementation.
"""
import argparse
import json
import logging
import os
import shutil
import sys
from datetime import datetime
from pathlib import Path
from typing import Optional
import torch
from datasets import load_dataset
from huggingface_hub import DatasetCard, login
from PIL import Image
from tqdm.auto import tqdm
from transformers import AutoModel, AutoTokenizer
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Resolution mode presets
RESOLUTION_MODES = {
    "tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
    "small": {"base_size": 640, "image_size": 640, "crop_mode": False},
    "base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
    "large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
    "gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},  # Dynamic resolution
}
def check_cuda_availability():
    """Check if CUDA is available and exit if not."""
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with a CUDA-capable GPU.")
        sys.exit(1)
    else:
        logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
def create_dataset_card(
    source_dataset: str,
    model: str,
    num_samples: int,
    processing_time: str,
    resolution_mode: str,
    base_size: int,
    image_size: int,
    crop_mode: bool,
    image_column: str = "image",
    split: str = "train",
) -> str:
    """Create a dataset card documenting the OCR process."""
    model_name = model.split("/")[-1]
    return f"""---
tags:
- ocr
- document-processing
- deepseek
- deepseek-ocr
- markdown
- uv-script
- generated
---
# Document OCR using {model_name}
This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using DeepSeek-OCR.
## Processing Details
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}
### Configuration
- **Image Column**: `{image_column}`
- **Output Column**: `markdown`
- **Dataset Split**: `{split}`
- **Resolution Mode**: {resolution_mode}
- **Base Size**: {base_size}
- **Image Size**: {image_size}
- **Crop Mode**: {crop_mode}
## Model Information
DeepSeek-OCR is a state-of-the-art document OCR model that excels at:
- π **LaTeX equations** - Mathematical formulas preserved in LaTeX format
- π **Tables** - Extracted and formatted as HTML/markdown
- π **Document structure** - Headers, lists, and formatting maintained
- πΌοΈ **Image grounding** - Spatial layout and bounding box information
- π **Complex layouts** - Multi-column and hierarchical structures
- π **Multilingual** - Supports multiple languages
### Resolution Modes
- **Tiny** (512Γ512): Fast processing, 64 vision tokens
- **Small** (640Γ640): Balanced speed/quality, 100 vision tokens
- **Base** (1024Γ1024): High quality, 256 vision tokens
- **Large** (1280Γ1280): Maximum quality, 400 vision tokens
- **Gundam** (dynamic): Adaptive multi-tile processing for large documents
## Dataset Structure
The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format with preserved structure
- `inference_info`: JSON list tracking all OCR models applied to this dataset
## Usage
```python
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{{{{output_dataset_id}}}}", split="{split}")
# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {{{{info['column_name']}}}} - Model: {{{{info['model_id']}}}}")
```
## Reproduction
This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DeepSeek OCR script:
```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr.py \\
    {source_dataset} \\
    <output-dataset> \\
    --resolution-mode {resolution_mode} \\
    --image-column {image_column}
```
## Performance
- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second
- **Processing Method**: Sequential (Transformers API, no batching)
Note: This uses the official Transformers implementation. For faster batch processing,
consider using the vLLM version once DeepSeek-OCR is officially supported by vLLM.
Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts)
"""
def process_single_image(
    model,
    tokenizer,
    image: Image.Image,
    prompt: str,
    base_size: int,
    image_size: int,
    crop_mode: bool,
    temp_image_path: str,
    temp_output_dir: str,
) -> str:
    """Process a single image through DeepSeek-OCR."""
    # Convert to RGB if needed
    if image.mode != "RGB":
        image = image.convert("RGB")
    # Save to temp file (model.infer expects a file path)
    image.save(temp_image_path, format="PNG")
    # Run inference
    result = model.infer(
        tokenizer,
        prompt=prompt,
        image_file=temp_image_path,
        output_path=temp_output_dir,  # Need real directory path
        base_size=base_size,
        image_size=image_size,
        crop_mode=crop_mode,
        save_results=False,
        test_compress=False,
    )
    return result if isinstance(result, str) else str(result)
def main(
    input_dataset: str,
    output_dataset: str,
    image_column: str = "image",
    model: str = "deepseek-ai/DeepSeek-OCR",
    resolution_mode: str = "gundam",
    base_size: Optional[int] = None,
    image_size: Optional[int] = None,
    crop_mode: Optional[bool] = None,
    prompt: str = "<image>\n<|grounding|>Convert the document to markdown.",
    hf_token: str = None,
    split: str = "train",
    max_samples: int = None,
    private: bool = False,
    shuffle: bool = False,
    seed: int = 42,
):
    """Process images from HF dataset through DeepSeek-OCR model."""
    # Check CUDA availability first
    check_cuda_availability()
    # Track processing start time
    start_time = datetime.now()
    # Enable HF_TRANSFER for faster downloads
    os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
    # Login to HF if token provided
    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
    if HF_TOKEN:
        login(token=HF_TOKEN)
    # Determine resolution settings
    if resolution_mode in RESOLUTION_MODES:
        mode_config = RESOLUTION_MODES[resolution_mode]
        final_base_size = base_size if base_size is not None else mode_config["base_size"]
        final_image_size = image_size if image_size is not None else mode_config["image_size"]
        final_crop_mode = crop_mode if crop_mode is not None else mode_config["crop_mode"]
        logger.info(f"Using resolution mode: {resolution_mode}")
    else:
        # Custom mode - require all parameters
        if base_size is None or image_size is None or crop_mode is None:
            raise ValueError(
                f"Invalid resolution mode '{resolution_mode}'. "
                f"Use one of {list(RESOLUTION_MODES.keys())} or specify "
                f"--base-size, --image-size, and --crop-mode manually."
            )
        final_base_size = base_size
        final_image_size = image_size
        final_crop_mode = crop_mode
        resolution_mode = "custom"
    logger.info(
        f"Resolution: base_size={final_base_size}, "
        f"image_size={final_image_size}, crop_mode={final_crop_mode}"
    )
    # Load dataset
    logger.info(f"Loading dataset: {input_dataset}")
    dataset = load_dataset(input_dataset, split=split)
    # Validate image column
    if image_column not in dataset.column_names:
        raise ValueError(
            f"Column '{image_column}' not found. Available: {dataset.column_names}"
        )
    # Shuffle if requested
    if shuffle:
        logger.info(f"Shuffling dataset with seed {seed}")
        dataset = dataset.shuffle(seed=seed)
    # Limit samples if requested
    if max_samples:
        dataset = dataset.select(range(min(max_samples, len(dataset))))
        logger.info(f"Limited to {len(dataset)} samples")
    # Initialize model
    logger.info(f"Loading model: {model}")
    tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True)
    try:
        model_obj = AutoModel.from_pretrained(
            model,
            _attn_implementation="flash_attention_2",
            trust_remote_code=True,
            use_safetensors=True,
        )
    except Exception as e:
        logger.warning(f"Failed to load with flash_attention_2: {e}")
        logger.info("Falling back to standard attention...")
        model_obj = AutoModel.from_pretrained(
            model,
            trust_remote_code=True,
            use_safetensors=True,
        )
    model_obj = model_obj.eval().cuda().to(torch.bfloat16)
    logger.info("Model loaded successfully")
    # Process images sequentially
    all_markdown = []
    logger.info(f"Processing {len(dataset)} images (sequential, no batching)")
    logger.info("Note: This may be slower than vLLM-based scripts")
    # Create temp directories for image files and output (simple local dirs)
    temp_dir = Path("temp_images")
    temp_dir.mkdir(exist_ok=True)
    temp_image_path = str(temp_dir / "temp_image.png")
    temp_output_dir = Path("temp_output")
    temp_output_dir.mkdir(exist_ok=True)
    try:
        for i in tqdm(range(len(dataset)), desc="OCR processing"):
            try:
                image = dataset[i][image_column]
                # Handle different image formats
                if isinstance(image, dict) and "bytes" in image:
                    from io import BytesIO
                    image = Image.open(BytesIO(image["bytes"]))
                elif isinstance(image, str):
                    image = Image.open(image)
                elif not isinstance(image, Image.Image):
                    raise ValueError(f"Unsupported image type: {type(image)}")
                # Process image
                result = process_single_image(
                    model_obj,
                    tokenizer,
                    image,
                    prompt,
                    final_base_size,
                    final_image_size,
                    final_crop_mode,
                    temp_image_path,
                    str(temp_output_dir),
                )
                all_markdown.append(result)
            except Exception as e:
                logger.error(f"Error processing image {i}: {e}")
                all_markdown.append("[OCR FAILED]")
    finally:
        # Clean up temp directories
        try:
            shutil.rmtree(temp_dir)
            shutil.rmtree(temp_output_dir)
        except:
            pass
    # Add markdown column to dataset
    logger.info("Adding markdown column to dataset")
    dataset = dataset.add_column("markdown", all_markdown)
    # Handle inference_info tracking
    logger.info("Updating inference_info...")
    # Check for existing inference_info
    if "inference_info" in dataset.column_names:
        try:
            existing_info = json.loads(dataset[0]["inference_info"])
            if not isinstance(existing_info, list):
                existing_info = [existing_info]
        except (json.JSONDecodeError, TypeError):
            existing_info = []
        dataset = dataset.remove_columns(["inference_info"])
    else:
        existing_info = []
    # Add new inference info
    new_info = {
        "column_name": "markdown",
        "model_id": model,
        "processing_date": datetime.now().isoformat(),
        "resolution_mode": resolution_mode,
        "base_size": final_base_size,
        "image_size": final_image_size,
        "crop_mode": final_crop_mode,
        "prompt": prompt,
        "script": "deepseek-ocr.py",
        "script_version": "1.0.0",
        "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr.py",
        "implementation": "transformers (sequential)",
    }
    existing_info.append(new_info)
    # Add updated inference_info column
    info_json = json.dumps(existing_info, ensure_ascii=False)
    dataset = dataset.add_column("inference_info", [info_json] * len(dataset))
    # Push to hub
    logger.info(f"Pushing to {output_dataset}")
    dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
    # Calculate processing time
    end_time = datetime.now()
    processing_duration = end_time - start_time
    processing_time = f"{processing_duration.total_seconds() / 60:.1f} minutes"
    # Create and push dataset card
    logger.info("Creating dataset card...")
    card_content = create_dataset_card(
        source_dataset=input_dataset,
        model=model,
        num_samples=len(dataset),
        processing_time=processing_time,
        resolution_mode=resolution_mode,
        base_size=final_base_size,
        image_size=final_image_size,
        crop_mode=final_crop_mode,
        image_column=image_column,
        split=split,
    )
    card = DatasetCard(card_content)
    card.push_to_hub(output_dataset, token=HF_TOKEN)
    logger.info("β
 Dataset card created and pushed!")
    logger.info("β
 OCR conversion complete!")
    logger.info(
        f"Dataset available at: https://huggingface.co/datasets/{output_dataset}"
    )
if __name__ == "__main__":
    # Show example usage if no arguments
    if len(sys.argv) == 1:
        print("=" * 80)
        print("DeepSeek-OCR to Markdown Converter (Transformers)")
        print("=" * 80)
        print("\nThis script converts document images to markdown using")
        print("DeepSeek-OCR with the official Transformers API.")
        print("\nFeatures:")
        print("- Multiple resolution modes (Tiny/Small/Base/Large/Gundam)")
        print("- LaTeX equation recognition")
        print("- Table extraction and formatting")
        print("- Document structure preservation")
        print("- Image grounding and spatial layout")
        print("- Multilingual support")
        print("\nNote: Sequential processing (no batching). Slower than vLLM scripts.")
        print("\nExample usage:")
        print("\n1. Basic OCR conversion (Gundam mode - dynamic resolution):")
        print("   uv run deepseek-ocr.py document-images markdown-docs")
        print("\n2. High quality mode (Large - 1280Γ1280):")
        print("   uv run deepseek-ocr.py scanned-pdfs extracted-text --resolution-mode large")
        print("\n3. Fast processing (Tiny - 512Γ512):")
        print("   uv run deepseek-ocr.py quick-test output --resolution-mode tiny")
        print("\n4. Process a subset for testing:")
        print("   uv run deepseek-ocr.py large-dataset test-output --max-samples 10")
        print("\n5. Custom resolution:")
        print("   uv run deepseek-ocr.py dataset output \\")
        print("       --base-size 1024 --image-size 640 --crop-mode")
        print("\n6. Running on HF Jobs:")
        print("   hf jobs uv run --flavor l4x1 \\")
        print('     --secrets HF_TOKEN \\')
        print("     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr.py \\")
        print("       your-document-dataset \\")
        print("       your-markdown-output")
        print("\n" + "=" * 80)
        print("\nFor full help, run: uv run deepseek-ocr.py --help")
        sys.exit(0)
    parser = argparse.ArgumentParser(
        description="OCR images to markdown using DeepSeek-OCR (Transformers)",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Resolution Modes:
  tiny      512Γ512 pixels, fast processing (64 vision tokens)
  small     640Γ640 pixels, balanced (100 vision tokens)
  base      1024Γ1024 pixels, high quality (256 vision tokens)
  large     1280Γ1280 pixels, maximum quality (400 vision tokens)
  gundam    Dynamic multi-tile processing (adaptive)
Examples:
  # Basic usage with default Gundam mode
  uv run deepseek-ocr.py my-images-dataset ocr-results
  # High quality processing
  uv run deepseek-ocr.py documents extracted-text --resolution-mode large
  # Fast processing for testing
  uv run deepseek-ocr.py dataset output --resolution-mode tiny --max-samples 100
  # Custom resolution settings
  uv run deepseek-ocr.py dataset output --base-size 1024 --image-size 640 --crop-mode
        """,
    )
    parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
    parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
    parser.add_argument(
        "--image-column",
        default="image",
        help="Column containing images (default: image)",
    )
    parser.add_argument(
        "--model",
        default="deepseek-ai/DeepSeek-OCR",
        help="Model to use (default: deepseek-ai/DeepSeek-OCR)",
    )
    parser.add_argument(
        "--resolution-mode",
        default="gundam",
        choices=list(RESOLUTION_MODES.keys()) + ["custom"],
        help="Resolution mode preset (default: gundam)",
    )
    parser.add_argument(
        "--base-size",
        type=int,
        help="Base resolution size (overrides resolution-mode)",
    )
    parser.add_argument(
        "--image-size",
        type=int,
        help="Image tile size (overrides resolution-mode)",
    )
    parser.add_argument(
        "--crop-mode",
        action="store_true",
        help="Enable dynamic multi-tile cropping (overrides resolution-mode)",
    )
    parser.add_argument(
        "--prompt",
        default="<image>\n<|grounding|>Convert the document to markdown.",
        help="Prompt for OCR (default: grounding markdown conversion)",
    )
    parser.add_argument("--hf-token", help="Hugging Face API token")
    parser.add_argument(
        "--split", default="train", help="Dataset split to use (default: train)"
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--private", action="store_true", help="Make output dataset private"
    )
    parser.add_argument(
        "--shuffle",
        action="store_true",
        help="Shuffle the dataset before processing (useful for random sampling)",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for shuffling (default: 42)",
    )
    args = parser.parse_args()
    main(
        input_dataset=args.input_dataset,
        output_dataset=args.output_dataset,
        image_column=args.image_column,
        model=args.model,
        resolution_mode=args.resolution_mode,
        base_size=args.base_size,
        image_size=args.image_size,
        crop_mode=args.crop_mode if args.crop_mode else None,
        prompt=args.prompt,
        hf_token=args.hf_token,
        split=args.split,
        max_samples=args.max_samples,
        private=args.private,
        shuffle=args.shuffle,
        seed=args.seed,
    )
 | 
