File size: 20,308 Bytes
fab5e6e
 
 
 
 
 
 
b2a28f3
dace8e2
 
fab5e6e
b2a28f3
 
 
 
fab5e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123f376
fab5e6e
 
a9bc1eb
fab5e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123f376
e69f406
fab5e6e
 
123f376
 
 
 
 
 
 
 
 
 
 
 
e69f406
123f376
 
 
 
 
 
fab5e6e
123f376
fab5e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e69f406
a9bc1eb
 
 
fab5e6e
e69f406
 
 
123f376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e69f406
123f376
 
 
 
 
 
 
 
 
e69f406
123f376
 
e69f406
123f376
 
fab5e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "datasets",
#     "huggingface-hub[hf_transfer]",
#     "pillow",
#     "torch",
#     "torchvision",
#     "transformers==4.46.3",
#     "tokenizers==0.20.3",
#     "tqdm",
#     "addict",
#     "matplotlib",
#     "einops",
#     "easydict",
# ]
#
# ///

"""
Convert document images to markdown using DeepSeek-OCR with Transformers.

This script processes images through the DeepSeek-OCR model to extract
text and structure as markdown, using the official Transformers API.

Features:
- Multiple resolution modes (Tiny/Small/Base/Large/Gundam)
- LaTeX equation recognition
- Table extraction and formatting
- Document structure preservation
- Image grounding and descriptions
- Multilingual support

Note: This script processes images sequentially (no batching) using the
official transformers API. It's slower than vLLM-based scripts but uses
the well-supported official implementation.
"""

import argparse
import json
import logging
import os
import shutil
import sys
from datetime import datetime
from pathlib import Path
from typing import Optional

import torch
from datasets import load_dataset
from huggingface_hub import DatasetCard, login
from PIL import Image
from tqdm.auto import tqdm
from transformers import AutoModel, AutoTokenizer

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Resolution mode presets
RESOLUTION_MODES = {
    "tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
    "small": {"base_size": 640, "image_size": 640, "crop_mode": False},
    "base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
    "large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
    "gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},  # Dynamic resolution
}


def check_cuda_availability():
    """Check if CUDA is available and exit if not."""
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with a CUDA-capable GPU.")
        sys.exit(1)
    else:
        logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")


def create_dataset_card(
    source_dataset: str,
    model: str,
    num_samples: int,
    processing_time: str,
    resolution_mode: str,
    base_size: int,
    image_size: int,
    crop_mode: bool,
    image_column: str = "image",
    split: str = "train",
) -> str:
    """Create a dataset card documenting the OCR process."""
    model_name = model.split("/")[-1]

    return f"""---
tags:
- ocr
- document-processing
- deepseek
- deepseek-ocr
- markdown
- uv-script
- generated
---

# Document OCR using {model_name}

This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using DeepSeek-OCR.

## Processing Details

- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}

### Configuration

- **Image Column**: `{image_column}`
- **Output Column**: `markdown`
- **Dataset Split**: `{split}`
- **Resolution Mode**: {resolution_mode}
- **Base Size**: {base_size}
- **Image Size**: {image_size}
- **Crop Mode**: {crop_mode}

## Model Information

DeepSeek-OCR is a state-of-the-art document OCR model that excels at:
- πŸ“ **LaTeX equations** - Mathematical formulas preserved in LaTeX format
- πŸ“Š **Tables** - Extracted and formatted as HTML/markdown
- πŸ“ **Document structure** - Headers, lists, and formatting maintained
- πŸ–ΌοΈ **Image grounding** - Spatial layout and bounding box information
- πŸ” **Complex layouts** - Multi-column and hierarchical structures
- 🌍 **Multilingual** - Supports multiple languages

### Resolution Modes

- **Tiny** (512Γ—512): Fast processing, 64 vision tokens
- **Small** (640Γ—640): Balanced speed/quality, 100 vision tokens
- **Base** (1024Γ—1024): High quality, 256 vision tokens
- **Large** (1280Γ—1280): Maximum quality, 400 vision tokens
- **Gundam** (dynamic): Adaptive multi-tile processing for large documents

## Dataset Structure

The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format with preserved structure
- `inference_info`: JSON list tracking all OCR models applied to this dataset

## Usage

```python
from datasets import load_dataset
import json

# Load the dataset
dataset = load_dataset("{{{{output_dataset_id}}}}", split="{split}")

# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break

# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {{{{info['column_name']}}}} - Model: {{{{info['model_id']}}}}")
```

## Reproduction

This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DeepSeek OCR script:

```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr.py \\
    {source_dataset} \\
    <output-dataset> \\
    --resolution-mode {resolution_mode} \\
    --image-column {image_column}
```

## Performance

- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second
- **Processing Method**: Sequential (Transformers API, no batching)

Note: This uses the official Transformers implementation. For faster batch processing,
consider using the vLLM version once DeepSeek-OCR is officially supported by vLLM.

Generated with πŸ€– [UV Scripts](https://huggingface.co/uv-scripts)
"""


def process_single_image(
    model,
    tokenizer,
    image: Image.Image,
    prompt: str,
    base_size: int,
    image_size: int,
    crop_mode: bool,
    temp_image_path: str,
    temp_output_dir: str,
) -> str:
    """Process a single image through DeepSeek-OCR."""
    # Convert to RGB if needed
    if image.mode != "RGB":
        image = image.convert("RGB")

    # Save to temp file (model.infer expects a file path)
    image.save(temp_image_path, format="PNG")

    # Run inference
    result = model.infer(
        tokenizer,
        prompt=prompt,
        image_file=temp_image_path,
        output_path=temp_output_dir,  # Need real directory path
        base_size=base_size,
        image_size=image_size,
        crop_mode=crop_mode,
        save_results=False,
        test_compress=False,
    )

    return result if isinstance(result, str) else str(result)


def main(
    input_dataset: str,
    output_dataset: str,
    image_column: str = "image",
    model: str = "deepseek-ai/DeepSeek-OCR",
    resolution_mode: str = "gundam",
    base_size: Optional[int] = None,
    image_size: Optional[int] = None,
    crop_mode: Optional[bool] = None,
    prompt: str = "<image>\n<|grounding|>Convert the document to markdown.",
    hf_token: str = None,
    split: str = "train",
    max_samples: int = None,
    private: bool = False,
    shuffle: bool = False,
    seed: int = 42,
):
    """Process images from HF dataset through DeepSeek-OCR model."""

    # Check CUDA availability first
    check_cuda_availability()

    # Track processing start time
    start_time = datetime.now()

    # Enable HF_TRANSFER for faster downloads
    os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

    # Login to HF if token provided
    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
    if HF_TOKEN:
        login(token=HF_TOKEN)

    # Determine resolution settings
    if resolution_mode in RESOLUTION_MODES:
        mode_config = RESOLUTION_MODES[resolution_mode]
        final_base_size = base_size if base_size is not None else mode_config["base_size"]
        final_image_size = image_size if image_size is not None else mode_config["image_size"]
        final_crop_mode = crop_mode if crop_mode is not None else mode_config["crop_mode"]
        logger.info(f"Using resolution mode: {resolution_mode}")
    else:
        # Custom mode - require all parameters
        if base_size is None or image_size is None or crop_mode is None:
            raise ValueError(
                f"Invalid resolution mode '{resolution_mode}'. "
                f"Use one of {list(RESOLUTION_MODES.keys())} or specify "
                f"--base-size, --image-size, and --crop-mode manually."
            )
        final_base_size = base_size
        final_image_size = image_size
        final_crop_mode = crop_mode
        resolution_mode = "custom"

    logger.info(
        f"Resolution: base_size={final_base_size}, "
        f"image_size={final_image_size}, crop_mode={final_crop_mode}"
    )

    # Load dataset
    logger.info(f"Loading dataset: {input_dataset}")
    dataset = load_dataset(input_dataset, split=split)

    # Validate image column
    if image_column not in dataset.column_names:
        raise ValueError(
            f"Column '{image_column}' not found. Available: {dataset.column_names}"
        )

    # Shuffle if requested
    if shuffle:
        logger.info(f"Shuffling dataset with seed {seed}")
        dataset = dataset.shuffle(seed=seed)

    # Limit samples if requested
    if max_samples:
        dataset = dataset.select(range(min(max_samples, len(dataset))))
        logger.info(f"Limited to {len(dataset)} samples")

    # Initialize model
    logger.info(f"Loading model: {model}")
    tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True)

    try:
        model_obj = AutoModel.from_pretrained(
            model,
            _attn_implementation="flash_attention_2",
            trust_remote_code=True,
            use_safetensors=True,
        )
    except Exception as e:
        logger.warning(f"Failed to load with flash_attention_2: {e}")
        logger.info("Falling back to standard attention...")
        model_obj = AutoModel.from_pretrained(
            model,
            trust_remote_code=True,
            use_safetensors=True,
        )

    model_obj = model_obj.eval().cuda().to(torch.bfloat16)
    logger.info("Model loaded successfully")

    # Process images sequentially
    all_markdown = []

    logger.info(f"Processing {len(dataset)} images (sequential, no batching)")
    logger.info("Note: This may be slower than vLLM-based scripts")

    # Create temp directories for image files and output (simple local dirs)
    temp_dir = Path("temp_images")
    temp_dir.mkdir(exist_ok=True)
    temp_image_path = str(temp_dir / "temp_image.png")

    temp_output_dir = Path("temp_output")
    temp_output_dir.mkdir(exist_ok=True)

    try:
        for i in tqdm(range(len(dataset)), desc="OCR processing"):
            try:
                image = dataset[i][image_column]

                # Handle different image formats
                if isinstance(image, dict) and "bytes" in image:
                    from io import BytesIO
                    image = Image.open(BytesIO(image["bytes"]))
                elif isinstance(image, str):
                    image = Image.open(image)
                elif not isinstance(image, Image.Image):
                    raise ValueError(f"Unsupported image type: {type(image)}")

                # Process image
                result = process_single_image(
                    model_obj,
                    tokenizer,
                    image,
                    prompt,
                    final_base_size,
                    final_image_size,
                    final_crop_mode,
                    temp_image_path,
                    str(temp_output_dir),
                )

                all_markdown.append(result)

            except Exception as e:
                logger.error(f"Error processing image {i}: {e}")
                all_markdown.append("[OCR FAILED]")

    finally:
        # Clean up temp directories
        try:
            shutil.rmtree(temp_dir)
            shutil.rmtree(temp_output_dir)
        except:
            pass

    # Add markdown column to dataset
    logger.info("Adding markdown column to dataset")
    dataset = dataset.add_column("markdown", all_markdown)

    # Handle inference_info tracking
    logger.info("Updating inference_info...")

    # Check for existing inference_info
    if "inference_info" in dataset.column_names:
        try:
            existing_info = json.loads(dataset[0]["inference_info"])
            if not isinstance(existing_info, list):
                existing_info = [existing_info]
        except (json.JSONDecodeError, TypeError):
            existing_info = []
        dataset = dataset.remove_columns(["inference_info"])
    else:
        existing_info = []

    # Add new inference info
    new_info = {
        "column_name": "markdown",
        "model_id": model,
        "processing_date": datetime.now().isoformat(),
        "resolution_mode": resolution_mode,
        "base_size": final_base_size,
        "image_size": final_image_size,
        "crop_mode": final_crop_mode,
        "prompt": prompt,
        "script": "deepseek-ocr.py",
        "script_version": "1.0.0",
        "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr.py",
        "implementation": "transformers (sequential)",
    }
    existing_info.append(new_info)

    # Add updated inference_info column
    info_json = json.dumps(existing_info, ensure_ascii=False)
    dataset = dataset.add_column("inference_info", [info_json] * len(dataset))

    # Push to hub
    logger.info(f"Pushing to {output_dataset}")
    dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)

    # Calculate processing time
    end_time = datetime.now()
    processing_duration = end_time - start_time
    processing_time = f"{processing_duration.total_seconds() / 60:.1f} minutes"

    # Create and push dataset card
    logger.info("Creating dataset card...")
    card_content = create_dataset_card(
        source_dataset=input_dataset,
        model=model,
        num_samples=len(dataset),
        processing_time=processing_time,
        resolution_mode=resolution_mode,
        base_size=final_base_size,
        image_size=final_image_size,
        crop_mode=final_crop_mode,
        image_column=image_column,
        split=split,
    )

    card = DatasetCard(card_content)
    card.push_to_hub(output_dataset, token=HF_TOKEN)
    logger.info("βœ… Dataset card created and pushed!")

    logger.info("βœ… OCR conversion complete!")
    logger.info(
        f"Dataset available at: https://huggingface.co/datasets/{output_dataset}"
    )


if __name__ == "__main__":
    # Show example usage if no arguments
    if len(sys.argv) == 1:
        print("=" * 80)
        print("DeepSeek-OCR to Markdown Converter (Transformers)")
        print("=" * 80)
        print("\nThis script converts document images to markdown using")
        print("DeepSeek-OCR with the official Transformers API.")
        print("\nFeatures:")
        print("- Multiple resolution modes (Tiny/Small/Base/Large/Gundam)")
        print("- LaTeX equation recognition")
        print("- Table extraction and formatting")
        print("- Document structure preservation")
        print("- Image grounding and spatial layout")
        print("- Multilingual support")
        print("\nNote: Sequential processing (no batching). Slower than vLLM scripts.")
        print("\nExample usage:")
        print("\n1. Basic OCR conversion (Gundam mode - dynamic resolution):")
        print("   uv run deepseek-ocr.py document-images markdown-docs")
        print("\n2. High quality mode (Large - 1280Γ—1280):")
        print("   uv run deepseek-ocr.py scanned-pdfs extracted-text --resolution-mode large")
        print("\n3. Fast processing (Tiny - 512Γ—512):")
        print("   uv run deepseek-ocr.py quick-test output --resolution-mode tiny")
        print("\n4. Process a subset for testing:")
        print("   uv run deepseek-ocr.py large-dataset test-output --max-samples 10")
        print("\n5. Custom resolution:")
        print("   uv run deepseek-ocr.py dataset output \\")
        print("       --base-size 1024 --image-size 640 --crop-mode")
        print("\n6. Running on HF Jobs:")
        print("   hf jobs uv run --flavor l4x1 \\")
        print('     --secrets HF_TOKEN \\')
        print("     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr.py \\")
        print("       your-document-dataset \\")
        print("       your-markdown-output")
        print("\n" + "=" * 80)
        print("\nFor full help, run: uv run deepseek-ocr.py --help")
        sys.exit(0)

    parser = argparse.ArgumentParser(
        description="OCR images to markdown using DeepSeek-OCR (Transformers)",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Resolution Modes:
  tiny      512Γ—512 pixels, fast processing (64 vision tokens)
  small     640Γ—640 pixels, balanced (100 vision tokens)
  base      1024Γ—1024 pixels, high quality (256 vision tokens)
  large     1280Γ—1280 pixels, maximum quality (400 vision tokens)
  gundam    Dynamic multi-tile processing (adaptive)

Examples:
  # Basic usage with default Gundam mode
  uv run deepseek-ocr.py my-images-dataset ocr-results

  # High quality processing
  uv run deepseek-ocr.py documents extracted-text --resolution-mode large

  # Fast processing for testing
  uv run deepseek-ocr.py dataset output --resolution-mode tiny --max-samples 100

  # Custom resolution settings
  uv run deepseek-ocr.py dataset output --base-size 1024 --image-size 640 --crop-mode
        """,
    )

    parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
    parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
    parser.add_argument(
        "--image-column",
        default="image",
        help="Column containing images (default: image)",
    )
    parser.add_argument(
        "--model",
        default="deepseek-ai/DeepSeek-OCR",
        help="Model to use (default: deepseek-ai/DeepSeek-OCR)",
    )
    parser.add_argument(
        "--resolution-mode",
        default="gundam",
        choices=list(RESOLUTION_MODES.keys()) + ["custom"],
        help="Resolution mode preset (default: gundam)",
    )
    parser.add_argument(
        "--base-size",
        type=int,
        help="Base resolution size (overrides resolution-mode)",
    )
    parser.add_argument(
        "--image-size",
        type=int,
        help="Image tile size (overrides resolution-mode)",
    )
    parser.add_argument(
        "--crop-mode",
        action="store_true",
        help="Enable dynamic multi-tile cropping (overrides resolution-mode)",
    )
    parser.add_argument(
        "--prompt",
        default="<image>\n<|grounding|>Convert the document to markdown.",
        help="Prompt for OCR (default: grounding markdown conversion)",
    )
    parser.add_argument("--hf-token", help="Hugging Face API token")
    parser.add_argument(
        "--split", default="train", help="Dataset split to use (default: train)"
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--private", action="store_true", help="Make output dataset private"
    )
    parser.add_argument(
        "--shuffle",
        action="store_true",
        help="Shuffle the dataset before processing (useful for random sampling)",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for shuffling (default: 42)",
    )

    args = parser.parse_args()

    main(
        input_dataset=args.input_dataset,
        output_dataset=args.output_dataset,
        image_column=args.image_column,
        model=args.model,
        resolution_mode=args.resolution_mode,
        base_size=args.base_size,
        image_size=args.image_size,
        crop_mode=args.crop_mode if args.crop_mode else None,
        prompt=args.prompt,
        hf_token=args.hf_token,
        split=args.split,
        max_samples=args.max_samples,
        private=args.private,
        shuffle=args.shuffle,
        seed=args.seed,
    )