|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Convert document images to markdown using DeepSeek-OCR with Transformers. | 
					
						
						|  |  | 
					
						
						|  | This script processes images through the DeepSeek-OCR model to extract | 
					
						
						|  | text and structure as markdown, using the official Transformers API. | 
					
						
						|  |  | 
					
						
						|  | Features: | 
					
						
						|  | - Multiple resolution modes (Tiny/Small/Base/Large/Gundam) | 
					
						
						|  | - LaTeX equation recognition | 
					
						
						|  | - Table extraction and formatting | 
					
						
						|  | - Document structure preservation | 
					
						
						|  | - Image grounding and descriptions | 
					
						
						|  | - Multilingual support | 
					
						
						|  |  | 
					
						
						|  | Note: This script processes images sequentially (no batching) using the | 
					
						
						|  | official transformers API. It's slower than vLLM-based scripts but uses | 
					
						
						|  | the well-supported official implementation. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import argparse | 
					
						
						|  | import json | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import shutil | 
					
						
						|  | import sys | 
					
						
						|  | from datetime import datetime | 
					
						
						|  | from pathlib import Path | 
					
						
						|  | from typing import Optional | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from datasets import load_dataset | 
					
						
						|  | from huggingface_hub import DatasetCard, login | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from tqdm.auto import tqdm | 
					
						
						|  | from transformers import AutoModel, AutoTokenizer | 
					
						
						|  |  | 
					
						
						|  | logging.basicConfig(level=logging.INFO) | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | RESOLUTION_MODES = { | 
					
						
						|  | "tiny": {"base_size": 512, "image_size": 512, "crop_mode": False}, | 
					
						
						|  | "small": {"base_size": 640, "image_size": 640, "crop_mode": False}, | 
					
						
						|  | "base": {"base_size": 1024, "image_size": 1024, "crop_mode": False}, | 
					
						
						|  | "large": {"base_size": 1280, "image_size": 1280, "crop_mode": False}, | 
					
						
						|  | "gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True}, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_cuda_availability(): | 
					
						
						|  | """Check if CUDA is available and exit if not.""" | 
					
						
						|  | if not torch.cuda.is_available(): | 
					
						
						|  | logger.error("CUDA is not available. This script requires a GPU.") | 
					
						
						|  | logger.error("Please run on a machine with a CUDA-capable GPU.") | 
					
						
						|  | sys.exit(1) | 
					
						
						|  | else: | 
					
						
						|  | logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_dataset_card( | 
					
						
						|  | source_dataset: str, | 
					
						
						|  | model: str, | 
					
						
						|  | num_samples: int, | 
					
						
						|  | processing_time: str, | 
					
						
						|  | resolution_mode: str, | 
					
						
						|  | base_size: int, | 
					
						
						|  | image_size: int, | 
					
						
						|  | crop_mode: bool, | 
					
						
						|  | image_column: str = "image", | 
					
						
						|  | split: str = "train", | 
					
						
						|  | ) -> str: | 
					
						
						|  | """Create a dataset card documenting the OCR process.""" | 
					
						
						|  | model_name = model.split("/")[-1] | 
					
						
						|  |  | 
					
						
						|  | return f"""--- | 
					
						
						|  | tags: | 
					
						
						|  | - ocr | 
					
						
						|  | - document-processing | 
					
						
						|  | - deepseek | 
					
						
						|  | - deepseek-ocr | 
					
						
						|  | - markdown | 
					
						
						|  | - uv-script | 
					
						
						|  | - generated | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # Document OCR using {model_name} | 
					
						
						|  |  | 
					
						
						|  | This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using DeepSeek-OCR. | 
					
						
						|  |  | 
					
						
						|  | ## Processing Details | 
					
						
						|  |  | 
					
						
						|  | - **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) | 
					
						
						|  | - **Model**: [{model}](https://huggingface.co/{model}) | 
					
						
						|  | - **Number of Samples**: {num_samples:,} | 
					
						
						|  | - **Processing Time**: {processing_time} | 
					
						
						|  | - **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} | 
					
						
						|  |  | 
					
						
						|  | ### Configuration | 
					
						
						|  |  | 
					
						
						|  | - **Image Column**: `{image_column}` | 
					
						
						|  | - **Output Column**: `markdown` | 
					
						
						|  | - **Dataset Split**: `{split}` | 
					
						
						|  | - **Resolution Mode**: {resolution_mode} | 
					
						
						|  | - **Base Size**: {base_size} | 
					
						
						|  | - **Image Size**: {image_size} | 
					
						
						|  | - **Crop Mode**: {crop_mode} | 
					
						
						|  |  | 
					
						
						|  | ## Model Information | 
					
						
						|  |  | 
					
						
						|  | DeepSeek-OCR is a state-of-the-art document OCR model that excels at: | 
					
						
						|  | - π **LaTeX equations** - Mathematical formulas preserved in LaTeX format | 
					
						
						|  | - π **Tables** - Extracted and formatted as HTML/markdown | 
					
						
						|  | - π **Document structure** - Headers, lists, and formatting maintained | 
					
						
						|  | - πΌοΈ **Image grounding** - Spatial layout and bounding box information | 
					
						
						|  | - π **Complex layouts** - Multi-column and hierarchical structures | 
					
						
						|  | - π **Multilingual** - Supports multiple languages | 
					
						
						|  |  | 
					
						
						|  | ### Resolution Modes | 
					
						
						|  |  | 
					
						
						|  | - **Tiny** (512Γ512): Fast processing, 64 vision tokens | 
					
						
						|  | - **Small** (640Γ640): Balanced speed/quality, 100 vision tokens | 
					
						
						|  | - **Base** (1024Γ1024): High quality, 256 vision tokens | 
					
						
						|  | - **Large** (1280Γ1280): Maximum quality, 400 vision tokens | 
					
						
						|  | - **Gundam** (dynamic): Adaptive multi-tile processing for large documents | 
					
						
						|  |  | 
					
						
						|  | ## Dataset Structure | 
					
						
						|  |  | 
					
						
						|  | The dataset contains all original columns plus: | 
					
						
						|  | - `markdown`: The extracted text in markdown format with preserved structure | 
					
						
						|  | - `inference_info`: JSON list tracking all OCR models applied to this dataset | 
					
						
						|  |  | 
					
						
						|  | ## Usage | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from datasets import load_dataset | 
					
						
						|  | import json | 
					
						
						|  |  | 
					
						
						|  | # Load the dataset | 
					
						
						|  | dataset = load_dataset("{{{{output_dataset_id}}}}", split="{split}") | 
					
						
						|  |  | 
					
						
						|  | # Access the markdown text | 
					
						
						|  | for example in dataset: | 
					
						
						|  | print(example["markdown"]) | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | # View all OCR models applied to this dataset | 
					
						
						|  | inference_info = json.loads(dataset[0]["inference_info"]) | 
					
						
						|  | for info in inference_info: | 
					
						
						|  | print(f"Column: {{{{info['column_name']}}}} - Model: {{{{info['model_id']}}}}") | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Reproduction | 
					
						
						|  |  | 
					
						
						|  | This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DeepSeek OCR script: | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr.py \\ | 
					
						
						|  | {source_dataset} \\ | 
					
						
						|  | <output-dataset> \\ | 
					
						
						|  | --resolution-mode {resolution_mode} \\ | 
					
						
						|  | --image-column {image_column} | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Performance | 
					
						
						|  |  | 
					
						
						|  | - **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second | 
					
						
						|  | - **Processing Method**: Sequential (Transformers API, no batching) | 
					
						
						|  |  | 
					
						
						|  | Note: This uses the official Transformers implementation. For faster batch processing, | 
					
						
						|  | consider using the vLLM version once DeepSeek-OCR is officially supported by vLLM. | 
					
						
						|  |  | 
					
						
						|  | Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def process_single_image( | 
					
						
						|  | model, | 
					
						
						|  | tokenizer, | 
					
						
						|  | image: Image.Image, | 
					
						
						|  | prompt: str, | 
					
						
						|  | base_size: int, | 
					
						
						|  | image_size: int, | 
					
						
						|  | crop_mode: bool, | 
					
						
						|  | temp_image_path: str, | 
					
						
						|  | temp_output_dir: str, | 
					
						
						|  | ) -> str: | 
					
						
						|  | """Process a single image through DeepSeek-OCR.""" | 
					
						
						|  |  | 
					
						
						|  | if image.mode != "RGB": | 
					
						
						|  | image = image.convert("RGB") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image.save(temp_image_path, format="PNG") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | result = model.infer( | 
					
						
						|  | tokenizer, | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | image_file=temp_image_path, | 
					
						
						|  | output_path=temp_output_dir, | 
					
						
						|  | base_size=base_size, | 
					
						
						|  | image_size=image_size, | 
					
						
						|  | crop_mode=crop_mode, | 
					
						
						|  | save_results=False, | 
					
						
						|  | test_compress=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return result if isinstance(result, str) else str(result) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main( | 
					
						
						|  | input_dataset: str, | 
					
						
						|  | output_dataset: str, | 
					
						
						|  | image_column: str = "image", | 
					
						
						|  | model: str = "deepseek-ai/DeepSeek-OCR", | 
					
						
						|  | resolution_mode: str = "gundam", | 
					
						
						|  | base_size: Optional[int] = None, | 
					
						
						|  | image_size: Optional[int] = None, | 
					
						
						|  | crop_mode: Optional[bool] = None, | 
					
						
						|  | prompt: str = "<image>\n<|grounding|>Convert the document to markdown.", | 
					
						
						|  | hf_token: str = None, | 
					
						
						|  | split: str = "train", | 
					
						
						|  | max_samples: int = None, | 
					
						
						|  | private: bool = False, | 
					
						
						|  | shuffle: bool = False, | 
					
						
						|  | seed: int = 42, | 
					
						
						|  | ): | 
					
						
						|  | """Process images from HF dataset through DeepSeek-OCR model.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | check_cuda_availability() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | start_time = datetime.now() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") | 
					
						
						|  | if HF_TOKEN: | 
					
						
						|  | login(token=HF_TOKEN) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if resolution_mode in RESOLUTION_MODES: | 
					
						
						|  | mode_config = RESOLUTION_MODES[resolution_mode] | 
					
						
						|  | final_base_size = base_size if base_size is not None else mode_config["base_size"] | 
					
						
						|  | final_image_size = image_size if image_size is not None else mode_config["image_size"] | 
					
						
						|  | final_crop_mode = crop_mode if crop_mode is not None else mode_config["crop_mode"] | 
					
						
						|  | logger.info(f"Using resolution mode: {resolution_mode}") | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if base_size is None or image_size is None or crop_mode is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Invalid resolution mode '{resolution_mode}'. " | 
					
						
						|  | f"Use one of {list(RESOLUTION_MODES.keys())} or specify " | 
					
						
						|  | f"--base-size, --image-size, and --crop-mode manually." | 
					
						
						|  | ) | 
					
						
						|  | final_base_size = base_size | 
					
						
						|  | final_image_size = image_size | 
					
						
						|  | final_crop_mode = crop_mode | 
					
						
						|  | resolution_mode = "custom" | 
					
						
						|  |  | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Resolution: base_size={final_base_size}, " | 
					
						
						|  | f"image_size={final_image_size}, crop_mode={final_crop_mode}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading dataset: {input_dataset}") | 
					
						
						|  | dataset = load_dataset(input_dataset, split=split) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if image_column not in dataset.column_names: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Column '{image_column}' not found. Available: {dataset.column_names}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if shuffle: | 
					
						
						|  | logger.info(f"Shuffling dataset with seed {seed}") | 
					
						
						|  | dataset = dataset.shuffle(seed=seed) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if max_samples: | 
					
						
						|  | dataset = dataset.select(range(min(max_samples, len(dataset)))) | 
					
						
						|  | logger.info(f"Limited to {len(dataset)} samples") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading model: {model}") | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | model_obj = AutoModel.from_pretrained( | 
					
						
						|  | model, | 
					
						
						|  | _attn_implementation="flash_attention_2", | 
					
						
						|  | trust_remote_code=True, | 
					
						
						|  | use_safetensors=True, | 
					
						
						|  | ) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | logger.warning(f"Failed to load with flash_attention_2: {e}") | 
					
						
						|  | logger.info("Falling back to standard attention...") | 
					
						
						|  | model_obj = AutoModel.from_pretrained( | 
					
						
						|  | model, | 
					
						
						|  | trust_remote_code=True, | 
					
						
						|  | use_safetensors=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | model_obj = model_obj.eval().cuda().to(torch.bfloat16) | 
					
						
						|  | logger.info("Model loaded successfully") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_markdown = [] | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Processing {len(dataset)} images (sequential, no batching)") | 
					
						
						|  | logger.info("Note: This may be slower than vLLM-based scripts") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | temp_dir = Path("temp_images") | 
					
						
						|  | temp_dir.mkdir(exist_ok=True) | 
					
						
						|  | temp_image_path = str(temp_dir / "temp_image.png") | 
					
						
						|  |  | 
					
						
						|  | temp_output_dir = Path("temp_output") | 
					
						
						|  | temp_output_dir.mkdir(exist_ok=True) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | for i in tqdm(range(len(dataset)), desc="OCR processing"): | 
					
						
						|  | try: | 
					
						
						|  | image = dataset[i][image_column] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image, dict) and "bytes" in image: | 
					
						
						|  | from io import BytesIO | 
					
						
						|  | image = Image.open(BytesIO(image["bytes"])) | 
					
						
						|  | elif isinstance(image, str): | 
					
						
						|  | image = Image.open(image) | 
					
						
						|  | elif not isinstance(image, Image.Image): | 
					
						
						|  | raise ValueError(f"Unsupported image type: {type(image)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | result = process_single_image( | 
					
						
						|  | model_obj, | 
					
						
						|  | tokenizer, | 
					
						
						|  | image, | 
					
						
						|  | prompt, | 
					
						
						|  | final_base_size, | 
					
						
						|  | final_image_size, | 
					
						
						|  | final_crop_mode, | 
					
						
						|  | temp_image_path, | 
					
						
						|  | str(temp_output_dir), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | all_markdown.append(result) | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | logger.error(f"Error processing image {i}: {e}") | 
					
						
						|  | all_markdown.append("[OCR FAILED]") | 
					
						
						|  |  | 
					
						
						|  | finally: | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | shutil.rmtree(temp_dir) | 
					
						
						|  | shutil.rmtree(temp_output_dir) | 
					
						
						|  | except: | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info("Adding markdown column to dataset") | 
					
						
						|  | dataset = dataset.add_column("markdown", all_markdown) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info("Updating inference_info...") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "inference_info" in dataset.column_names: | 
					
						
						|  | try: | 
					
						
						|  | existing_info = json.loads(dataset[0]["inference_info"]) | 
					
						
						|  | if not isinstance(existing_info, list): | 
					
						
						|  | existing_info = [existing_info] | 
					
						
						|  | except (json.JSONDecodeError, TypeError): | 
					
						
						|  | existing_info = [] | 
					
						
						|  | dataset = dataset.remove_columns(["inference_info"]) | 
					
						
						|  | else: | 
					
						
						|  | existing_info = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_info = { | 
					
						
						|  | "column_name": "markdown", | 
					
						
						|  | "model_id": model, | 
					
						
						|  | "processing_date": datetime.now().isoformat(), | 
					
						
						|  | "resolution_mode": resolution_mode, | 
					
						
						|  | "base_size": final_base_size, | 
					
						
						|  | "image_size": final_image_size, | 
					
						
						|  | "crop_mode": final_crop_mode, | 
					
						
						|  | "prompt": prompt, | 
					
						
						|  | "script": "deepseek-ocr.py", | 
					
						
						|  | "script_version": "1.0.0", | 
					
						
						|  | "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr.py", | 
					
						
						|  | "implementation": "transformers (sequential)", | 
					
						
						|  | } | 
					
						
						|  | existing_info.append(new_info) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | info_json = json.dumps(existing_info, ensure_ascii=False) | 
					
						
						|  | dataset = dataset.add_column("inference_info", [info_json] * len(dataset)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Pushing to {output_dataset}") | 
					
						
						|  | dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | end_time = datetime.now() | 
					
						
						|  | processing_duration = end_time - start_time | 
					
						
						|  | processing_time = f"{processing_duration.total_seconds() / 60:.1f} minutes" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info("Creating dataset card...") | 
					
						
						|  | card_content = create_dataset_card( | 
					
						
						|  | source_dataset=input_dataset, | 
					
						
						|  | model=model, | 
					
						
						|  | num_samples=len(dataset), | 
					
						
						|  | processing_time=processing_time, | 
					
						
						|  | resolution_mode=resolution_mode, | 
					
						
						|  | base_size=final_base_size, | 
					
						
						|  | image_size=final_image_size, | 
					
						
						|  | crop_mode=final_crop_mode, | 
					
						
						|  | image_column=image_column, | 
					
						
						|  | split=split, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | card = DatasetCard(card_content) | 
					
						
						|  | card.push_to_hub(output_dataset, token=HF_TOKEN) | 
					
						
						|  | logger.info("β
 Dataset card created and pushed!") | 
					
						
						|  |  | 
					
						
						|  | logger.info("β
 OCR conversion complete!") | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Dataset available at: https://huggingface.co/datasets/{output_dataset}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  |  | 
					
						
						|  | if len(sys.argv) == 1: | 
					
						
						|  | print("=" * 80) | 
					
						
						|  | print("DeepSeek-OCR to Markdown Converter (Transformers)") | 
					
						
						|  | print("=" * 80) | 
					
						
						|  | print("\nThis script converts document images to markdown using") | 
					
						
						|  | print("DeepSeek-OCR with the official Transformers API.") | 
					
						
						|  | print("\nFeatures:") | 
					
						
						|  | print("- Multiple resolution modes (Tiny/Small/Base/Large/Gundam)") | 
					
						
						|  | print("- LaTeX equation recognition") | 
					
						
						|  | print("- Table extraction and formatting") | 
					
						
						|  | print("- Document structure preservation") | 
					
						
						|  | print("- Image grounding and spatial layout") | 
					
						
						|  | print("- Multilingual support") | 
					
						
						|  | print("\nNote: Sequential processing (no batching). Slower than vLLM scripts.") | 
					
						
						|  | print("\nExample usage:") | 
					
						
						|  | print("\n1. Basic OCR conversion (Gundam mode - dynamic resolution):") | 
					
						
						|  | print("   uv run deepseek-ocr.py document-images markdown-docs") | 
					
						
						|  | print("\n2. High quality mode (Large - 1280Γ1280):") | 
					
						
						|  | print("   uv run deepseek-ocr.py scanned-pdfs extracted-text --resolution-mode large") | 
					
						
						|  | print("\n3. Fast processing (Tiny - 512Γ512):") | 
					
						
						|  | print("   uv run deepseek-ocr.py quick-test output --resolution-mode tiny") | 
					
						
						|  | print("\n4. Process a subset for testing:") | 
					
						
						|  | print("   uv run deepseek-ocr.py large-dataset test-output --max-samples 10") | 
					
						
						|  | print("\n5. Custom resolution:") | 
					
						
						|  | print("   uv run deepseek-ocr.py dataset output \\") | 
					
						
						|  | print("       --base-size 1024 --image-size 640 --crop-mode") | 
					
						
						|  | print("\n6. Running on HF Jobs:") | 
					
						
						|  | print("   hf jobs uv run --flavor l4x1 \\") | 
					
						
						|  | print('     --secrets HF_TOKEN \\') | 
					
						
						|  | print("     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr.py \\") | 
					
						
						|  | print("       your-document-dataset \\") | 
					
						
						|  | print("       your-markdown-output") | 
					
						
						|  | print("\n" + "=" * 80) | 
					
						
						|  | print("\nFor full help, run: uv run deepseek-ocr.py --help") | 
					
						
						|  | sys.exit(0) | 
					
						
						|  |  | 
					
						
						|  | parser = argparse.ArgumentParser( | 
					
						
						|  | description="OCR images to markdown using DeepSeek-OCR (Transformers)", | 
					
						
						|  | formatter_class=argparse.RawDescriptionHelpFormatter, | 
					
						
						|  | epilog=""" | 
					
						
						|  | Resolution Modes: | 
					
						
						|  | tiny      512Γ512 pixels, fast processing (64 vision tokens) | 
					
						
						|  | small     640Γ640 pixels, balanced (100 vision tokens) | 
					
						
						|  | base      1024Γ1024 pixels, high quality (256 vision tokens) | 
					
						
						|  | large     1280Γ1280 pixels, maximum quality (400 vision tokens) | 
					
						
						|  | gundam    Dynamic multi-tile processing (adaptive) | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  | # Basic usage with default Gundam mode | 
					
						
						|  | uv run deepseek-ocr.py my-images-dataset ocr-results | 
					
						
						|  |  | 
					
						
						|  | # High quality processing | 
					
						
						|  | uv run deepseek-ocr.py documents extracted-text --resolution-mode large | 
					
						
						|  |  | 
					
						
						|  | # Fast processing for testing | 
					
						
						|  | uv run deepseek-ocr.py dataset output --resolution-mode tiny --max-samples 100 | 
					
						
						|  |  | 
					
						
						|  | # Custom resolution settings | 
					
						
						|  | uv run deepseek-ocr.py dataset output --base-size 1024 --image-size 640 --crop-mode | 
					
						
						|  | """, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") | 
					
						
						|  | parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--image-column", | 
					
						
						|  | default="image", | 
					
						
						|  | help="Column containing images (default: image)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--model", | 
					
						
						|  | default="deepseek-ai/DeepSeek-OCR", | 
					
						
						|  | help="Model to use (default: deepseek-ai/DeepSeek-OCR)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--resolution-mode", | 
					
						
						|  | default="gundam", | 
					
						
						|  | choices=list(RESOLUTION_MODES.keys()) + ["custom"], | 
					
						
						|  | help="Resolution mode preset (default: gundam)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--base-size", | 
					
						
						|  | type=int, | 
					
						
						|  | help="Base resolution size (overrides resolution-mode)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--image-size", | 
					
						
						|  | type=int, | 
					
						
						|  | help="Image tile size (overrides resolution-mode)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--crop-mode", | 
					
						
						|  | action="store_true", | 
					
						
						|  | help="Enable dynamic multi-tile cropping (overrides resolution-mode)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--prompt", | 
					
						
						|  | default="<image>\n<|grounding|>Convert the document to markdown.", | 
					
						
						|  | help="Prompt for OCR (default: grounding markdown conversion)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument("--hf-token", help="Hugging Face API token") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--split", default="train", help="Dataset split to use (default: train)" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-samples", | 
					
						
						|  | type=int, | 
					
						
						|  | help="Maximum number of samples to process (for testing)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--private", action="store_true", help="Make output dataset private" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--shuffle", | 
					
						
						|  | action="store_true", | 
					
						
						|  | help="Shuffle the dataset before processing (useful for random sampling)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--seed", | 
					
						
						|  | type=int, | 
					
						
						|  | default=42, | 
					
						
						|  | help="Random seed for shuffling (default: 42)", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  | main( | 
					
						
						|  | input_dataset=args.input_dataset, | 
					
						
						|  | output_dataset=args.output_dataset, | 
					
						
						|  | image_column=args.image_column, | 
					
						
						|  | model=args.model, | 
					
						
						|  | resolution_mode=args.resolution_mode, | 
					
						
						|  | base_size=args.base_size, | 
					
						
						|  | image_size=args.image_size, | 
					
						
						|  | crop_mode=args.crop_mode if args.crop_mode else None, | 
					
						
						|  | prompt=args.prompt, | 
					
						
						|  | hf_token=args.hf_token, | 
					
						
						|  | split=args.split, | 
					
						
						|  | max_samples=args.max_samples, | 
					
						
						|  | private=args.private, | 
					
						
						|  | shuffle=args.shuffle, | 
					
						
						|  | seed=args.seed, | 
					
						
						|  | ) | 
					
						
						|  |  |