|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Convert document images to markdown using LightOnOCR with vLLM. | 
					
						
						|  |  | 
					
						
						|  | LightOnOCR is a compact 1B multilingual OCR model optimized for production speed. | 
					
						
						|  | Combines Pixtral ViT encoder with Qwen3 language model for efficient document parsing. | 
					
						
						|  |  | 
					
						
						|  | NOTE: Requires vLLM nightly wheels for LightOnOCR support. First run may take | 
					
						
						|  | a few minutes to download and install dependencies. | 
					
						
						|  |  | 
					
						
						|  | Features: | 
					
						
						|  | - β‘ Fastest: 5.71 pages/sec on H100 GPU | 
					
						
						|  | - π― Compact: Only 1B parameters | 
					
						
						|  | - π Multilingual with European language optimization | 
					
						
						|  | - π LaTeX formula recognition | 
					
						
						|  | - π Table extraction (markdown format) | 
					
						
						|  | - π Document structure preservation | 
					
						
						|  | - π€ 3 vocabulary sizes (151k/32k/16k tokens) | 
					
						
						|  |  | 
					
						
						|  | Model: lightonai/LightOnOCR-1B-1025 | 
					
						
						|  | vLLM: Requires nightly build from main branch | 
					
						
						|  | Performance: 76.1% overall benchmark score | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import argparse | 
					
						
						|  | import base64 | 
					
						
						|  | import io | 
					
						
						|  | import json | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import sys | 
					
						
						|  | from typing import Any, Dict, List, Union | 
					
						
						|  | from datetime import datetime | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from datasets import load_dataset | 
					
						
						|  | from huggingface_hub import DatasetCard, login | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from toolz import partition_all | 
					
						
						|  | from tqdm.auto import tqdm | 
					
						
						|  | from vllm import LLM, SamplingParams | 
					
						
						|  |  | 
					
						
						|  | logging.basicConfig(level=logging.INFO) | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MODEL_VARIANTS = { | 
					
						
						|  | "151k": "lightonai/LightOnOCR-1B-1025", | 
					
						
						|  | "32k": "lightonai/LightOnOCR-0.9B-32k-1025", | 
					
						
						|  | "16k": "lightonai/LightOnOCR-0.9B-16k-1025", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_cuda_availability(): | 
					
						
						|  | """Check if CUDA is available and exit if not.""" | 
					
						
						|  | if not torch.cuda.is_available(): | 
					
						
						|  | logger.error("CUDA is not available. This script requires a GPU.") | 
					
						
						|  | logger.error("Please run on a machine with a CUDA-capable GPU.") | 
					
						
						|  | sys.exit(1) | 
					
						
						|  | else: | 
					
						
						|  | logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def resize_image_to_target(image: Image.Image, target_size: int = 1288) -> Image.Image: | 
					
						
						|  | """ | 
					
						
						|  | Resize image so longest dimension is target_size while maintaining aspect ratio. | 
					
						
						|  |  | 
					
						
						|  | LightOnOCR is optimized for 1280-1300px longest dimension at 300 DPI. | 
					
						
						|  | """ | 
					
						
						|  | width, height = image.size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if max(width, height) <= target_size: | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if width > height: | 
					
						
						|  | new_width = target_size | 
					
						
						|  | new_height = int(height * (target_size / width)) | 
					
						
						|  | else: | 
					
						
						|  | new_height = target_size | 
					
						
						|  | new_width = int(width * (target_size / height)) | 
					
						
						|  |  | 
					
						
						|  | return image.resize((new_width, new_height), Image.Resampling.LANCZOS) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def make_ocr_message( | 
					
						
						|  | image: Union[Image.Image, Dict[str, Any], str], | 
					
						
						|  | resize: bool = True, | 
					
						
						|  | target_size: int = 1288, | 
					
						
						|  | ) -> List[Dict]: | 
					
						
						|  | """ | 
					
						
						|  | Create chat message for OCR processing. | 
					
						
						|  |  | 
					
						
						|  | LightOnOCR expects images at 1280-1300px longest dimension for optimal results. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image, Image.Image): | 
					
						
						|  | pil_img = image | 
					
						
						|  | elif isinstance(image, dict) and "bytes" in image: | 
					
						
						|  | pil_img = Image.open(io.BytesIO(image["bytes"])) | 
					
						
						|  | elif isinstance(image, str): | 
					
						
						|  | pil_img = Image.open(image) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unsupported image type: {type(image)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pil_img = pil_img.convert("RGB") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if resize: | 
					
						
						|  | pil_img = resize_image_to_target(pil_img, target_size) | 
					
						
						|  | logger.debug(f"Resized image to {pil_img.size}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | buf = io.BytesIO() | 
					
						
						|  | pil_img.save(buf, format="PNG") | 
					
						
						|  | data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | { | 
					
						
						|  | "role": "user", | 
					
						
						|  | "content": [ | 
					
						
						|  | {"type": "image_url", "image_url": {"url": data_uri}}, | 
					
						
						|  | ], | 
					
						
						|  | } | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_dataset_card( | 
					
						
						|  | source_dataset: str, | 
					
						
						|  | model: str, | 
					
						
						|  | vocab_size: str, | 
					
						
						|  | num_samples: int, | 
					
						
						|  | processing_time: str, | 
					
						
						|  | batch_size: int, | 
					
						
						|  | max_model_len: int, | 
					
						
						|  | max_tokens: int, | 
					
						
						|  | gpu_memory_utilization: float, | 
					
						
						|  | temperature: float, | 
					
						
						|  | top_p: float, | 
					
						
						|  | target_size: int, | 
					
						
						|  | image_column: str = "image", | 
					
						
						|  | split: str = "train", | 
					
						
						|  | ) -> str: | 
					
						
						|  | """Create a dataset card documenting the OCR process.""" | 
					
						
						|  | model_name = model.split("/")[-1] | 
					
						
						|  |  | 
					
						
						|  | return f"""--- | 
					
						
						|  | tags: | 
					
						
						|  | - ocr | 
					
						
						|  | - document-processing | 
					
						
						|  | - lighton-ocr | 
					
						
						|  | - markdown | 
					
						
						|  | - uv-script | 
					
						
						|  | - generated | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # Document OCR using {model_name} | 
					
						
						|  |  | 
					
						
						|  | This dataset contains OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using LightOnOCR, a fast and compact 1B OCR model. | 
					
						
						|  |  | 
					
						
						|  | ## Processing Details | 
					
						
						|  |  | 
					
						
						|  | - **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) | 
					
						
						|  | - **Model**: [{model}](https://huggingface.co/{model}) | 
					
						
						|  | - **Vocabulary Size**: {vocab_size} tokens | 
					
						
						|  | - **Number of Samples**: {num_samples:,} | 
					
						
						|  | - **Processing Time**: {processing_time} | 
					
						
						|  | - **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} | 
					
						
						|  |  | 
					
						
						|  | ### Configuration | 
					
						
						|  |  | 
					
						
						|  | - **Image Column**: `{image_column}` | 
					
						
						|  | - **Output Column**: `markdown` | 
					
						
						|  | - **Dataset Split**: `{split}` | 
					
						
						|  | - **Batch Size**: {batch_size} | 
					
						
						|  | - **Target Image Size**: {target_size}px (longest dimension) | 
					
						
						|  | - **Max Model Length**: {max_model_len:,} tokens | 
					
						
						|  | - **Max Output Tokens**: {max_tokens:,} | 
					
						
						|  | - **Temperature**: {temperature} | 
					
						
						|  | - **Top P**: {top_p} | 
					
						
						|  | - **GPU Memory Utilization**: {gpu_memory_utilization:.1%} | 
					
						
						|  |  | 
					
						
						|  | ## Model Information | 
					
						
						|  |  | 
					
						
						|  | LightOnOCR is a fast, compact OCR model that excels at: | 
					
						
						|  | - β‘ **Production Speed** - 5.71 pages/second on H100 GPU | 
					
						
						|  | - π― **Compact Size** - Only 1B parameters | 
					
						
						|  | - π **LaTeX formulas** - Mathematical notation in LaTeX format | 
					
						
						|  | - π **Tables** - Extracted and formatted as markdown | 
					
						
						|  | - π **Document structure** - Hierarchy and layout preservation | 
					
						
						|  | - π **Multilingual** - Optimized for European languages | 
					
						
						|  | - π€ **Flexible vocabulary** - 151k/32k/16k token variants | 
					
						
						|  |  | 
					
						
						|  | ### Vocabulary Variants | 
					
						
						|  |  | 
					
						
						|  | - **151k tokens**: Full vocabulary, supports all languages | 
					
						
						|  | - **32k tokens**: European languages optimized (~12% faster decoding) | 
					
						
						|  | - **16k tokens**: European languages optimized (~12% faster decoding) | 
					
						
						|  |  | 
					
						
						|  | ## Dataset Structure | 
					
						
						|  |  | 
					
						
						|  | The dataset contains all original columns plus: | 
					
						
						|  | - `markdown`: The extracted text in markdown format with LaTeX formulas | 
					
						
						|  | - `inference_info`: JSON list tracking all OCR models applied to this dataset | 
					
						
						|  |  | 
					
						
						|  | ## Usage | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from datasets import load_dataset | 
					
						
						|  | import json | 
					
						
						|  |  | 
					
						
						|  | # Load the dataset | 
					
						
						|  | dataset = load_dataset("{{output_dataset_id}}", split="{split}") | 
					
						
						|  |  | 
					
						
						|  | # Access the markdown text | 
					
						
						|  | for example in dataset: | 
					
						
						|  | print(example["markdown"]) | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | # View all OCR models applied to this dataset | 
					
						
						|  | inference_info = json.loads(dataset[0]["inference_info"]) | 
					
						
						|  | for info in inference_info: | 
					
						
						|  | print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}") | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Reproduction | 
					
						
						|  |  | 
					
						
						|  | This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) LightOnOCR script: | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \\ | 
					
						
						|  | {source_dataset} \\ | 
					
						
						|  | <output-dataset> \\ | 
					
						
						|  | --vocab-size {vocab_size} \\ | 
					
						
						|  | --image-column {image_column} \\ | 
					
						
						|  | --batch-size {batch_size} | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Performance | 
					
						
						|  |  | 
					
						
						|  | - **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.2f} images/second | 
					
						
						|  | - **Benchmark Score**: 76.1% overall (across diverse document types) | 
					
						
						|  | - **Optimization**: Native resolution ViT + lightweight decoder | 
					
						
						|  |  | 
					
						
						|  | Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main( | 
					
						
						|  | input_dataset: str, | 
					
						
						|  | output_dataset: str, | 
					
						
						|  | image_column: str = "image", | 
					
						
						|  | batch_size: int = 16, | 
					
						
						|  | vocab_size: str = "151k", | 
					
						
						|  | max_model_len: int = 8192, | 
					
						
						|  | max_tokens: int = 6500, | 
					
						
						|  | temperature: float = 0.2, | 
					
						
						|  | top_p: float = 0.9, | 
					
						
						|  | gpu_memory_utilization: float = 0.8, | 
					
						
						|  | target_size: int = 1288, | 
					
						
						|  | no_resize: bool = False, | 
					
						
						|  | hf_token: str = None, | 
					
						
						|  | split: str = "train", | 
					
						
						|  | max_samples: int = None, | 
					
						
						|  | private: bool = False, | 
					
						
						|  | shuffle: bool = False, | 
					
						
						|  | seed: int = 42, | 
					
						
						|  | output_column: str = "markdown", | 
					
						
						|  | ): | 
					
						
						|  | """Process images from HF dataset through LightOnOCR model.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | check_cuda_availability() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | start_time = datetime.now() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") | 
					
						
						|  | if HF_TOKEN: | 
					
						
						|  | login(token=HF_TOKEN) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if vocab_size not in MODEL_VARIANTS: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Invalid vocab_size '{vocab_size}'. Choose from: {list(MODEL_VARIANTS.keys())}" | 
					
						
						|  | ) | 
					
						
						|  | model = MODEL_VARIANTS[vocab_size] | 
					
						
						|  | logger.info(f"Using model: {model} ({vocab_size} vocabulary)") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading dataset: {input_dataset}") | 
					
						
						|  | dataset = load_dataset(input_dataset, split=split) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if image_column not in dataset.column_names: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Column '{image_column}' not found. Available: {dataset.column_names}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if shuffle: | 
					
						
						|  | logger.info(f"Shuffling dataset with seed {seed}") | 
					
						
						|  | dataset = dataset.shuffle(seed=seed) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if max_samples: | 
					
						
						|  | dataset = dataset.select(range(min(max_samples, len(dataset)))) | 
					
						
						|  | logger.info(f"Limited to {len(dataset)} samples") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Initializing vLLM with LightOnOCR") | 
					
						
						|  | logger.info("This may take a few minutes on first run...") | 
					
						
						|  | llm = LLM( | 
					
						
						|  | model=model, | 
					
						
						|  | trust_remote_code=True, | 
					
						
						|  | max_model_len=max_model_len, | 
					
						
						|  | gpu_memory_utilization=gpu_memory_utilization, | 
					
						
						|  | limit_mm_per_prompt={"image": 1}, | 
					
						
						|  | enforce_eager=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sampling_params = SamplingParams( | 
					
						
						|  | temperature=temperature, | 
					
						
						|  | top_p=top_p, | 
					
						
						|  | max_tokens=max_tokens, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Processing {len(dataset)} images in batches of {batch_size}") | 
					
						
						|  | logger.info(f"Output will be written to column: {output_column}") | 
					
						
						|  | if not no_resize: | 
					
						
						|  | logger.info(f"Images will be resized to {target_size}px (longest dimension)") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_outputs = [] | 
					
						
						|  |  | 
					
						
						|  | for batch_indices in tqdm( | 
					
						
						|  | partition_all(batch_size, range(len(dataset))), | 
					
						
						|  | total=(len(dataset) + batch_size - 1) // batch_size, | 
					
						
						|  | desc="LightOnOCR processing", | 
					
						
						|  | ): | 
					
						
						|  | batch_indices = list(batch_indices) | 
					
						
						|  | batch_images = [dataset[i][image_column] for i in batch_indices] | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | batch_messages = [ | 
					
						
						|  | make_ocr_message(img, resize=not no_resize, target_size=target_size) | 
					
						
						|  | for img in batch_images | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = llm.chat(batch_messages, sampling_params) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for output in outputs: | 
					
						
						|  | text = output.outputs[0].text.strip() | 
					
						
						|  | all_outputs.append(text) | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | logger.error(f"Error processing batch: {e}") | 
					
						
						|  |  | 
					
						
						|  | all_outputs.extend(["[OCR ERROR]"] * len(batch_images)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | processing_duration = datetime.now() - start_time | 
					
						
						|  | processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Adding '{output_column}' column to dataset") | 
					
						
						|  | dataset = dataset.add_column(output_column, all_outputs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inference_entry = { | 
					
						
						|  | "model_id": model, | 
					
						
						|  | "model_name": "LightOnOCR", | 
					
						
						|  | "vocab_size": vocab_size, | 
					
						
						|  | "column_name": output_column, | 
					
						
						|  | "timestamp": datetime.now().isoformat(), | 
					
						
						|  | "temperature": temperature, | 
					
						
						|  | "top_p": top_p, | 
					
						
						|  | "max_tokens": max_tokens, | 
					
						
						|  | "target_size": target_size if not no_resize else "original", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if "inference_info" in dataset.column_names: | 
					
						
						|  |  | 
					
						
						|  | logger.info("Updating existing inference_info column") | 
					
						
						|  |  | 
					
						
						|  | def update_inference_info(example): | 
					
						
						|  | try: | 
					
						
						|  | existing_info = json.loads(example["inference_info"]) if example["inference_info"] else [] | 
					
						
						|  | except (json.JSONDecodeError, TypeError): | 
					
						
						|  | existing_info = [] | 
					
						
						|  |  | 
					
						
						|  | existing_info.append(inference_entry) | 
					
						
						|  | return {"inference_info": json.dumps(existing_info)} | 
					
						
						|  |  | 
					
						
						|  | dataset = dataset.map(update_inference_info) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | logger.info("Creating new inference_info column") | 
					
						
						|  | inference_list = [json.dumps([inference_entry])] * len(dataset) | 
					
						
						|  | dataset = dataset.add_column("inference_info", inference_list) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Pushing to {output_dataset}") | 
					
						
						|  | dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info("Creating dataset card") | 
					
						
						|  | card_content = create_dataset_card( | 
					
						
						|  | source_dataset=input_dataset, | 
					
						
						|  | model=model, | 
					
						
						|  | vocab_size=vocab_size, | 
					
						
						|  | num_samples=len(dataset), | 
					
						
						|  | processing_time=processing_time_str, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | max_model_len=max_model_len, | 
					
						
						|  | max_tokens=max_tokens, | 
					
						
						|  | gpu_memory_utilization=gpu_memory_utilization, | 
					
						
						|  | temperature=temperature, | 
					
						
						|  | top_p=top_p, | 
					
						
						|  | target_size=target_size, | 
					
						
						|  | image_column=image_column, | 
					
						
						|  | split=split, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | card = DatasetCard(card_content) | 
					
						
						|  | card.push_to_hub(output_dataset, token=HF_TOKEN) | 
					
						
						|  |  | 
					
						
						|  | logger.info("β
 LightOnOCR processing complete!") | 
					
						
						|  | logger.info(f"Dataset available at: https://huggingface.co/datasets/{output_dataset}") | 
					
						
						|  | logger.info(f"Processing time: {processing_time_str}") | 
					
						
						|  | logger.info(f"Processing speed: {len(dataset) / processing_duration.total_seconds():.2f} images/sec") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  |  | 
					
						
						|  | if len(sys.argv) == 1: | 
					
						
						|  | print("=" * 80) | 
					
						
						|  | print("LightOnOCR Document Processing") | 
					
						
						|  | print("=" * 80) | 
					
						
						|  | print("\nFast, compact 1B OCR model for production workloads") | 
					
						
						|  | print("\nFeatures:") | 
					
						
						|  | print("- β‘ Fastest processing: 5.71 pages/sec on H100") | 
					
						
						|  | print("- π― Compact: Only 1B parameters") | 
					
						
						|  | print("- π Multilingual with European language optimization") | 
					
						
						|  | print("- π LaTeX formula recognition") | 
					
						
						|  | print("- π Table extraction (markdown format)") | 
					
						
						|  | print("- π€ 3 vocabulary sizes for speed/quality tradeoffs") | 
					
						
						|  | print("\nExample usage:") | 
					
						
						|  | print("\n1. Basic OCR (full vocabulary):") | 
					
						
						|  | print("   uv run lighton-ocr.py input-dataset output-dataset") | 
					
						
						|  | print("\n2. European languages optimized (faster):") | 
					
						
						|  | print("   uv run lighton-ocr.py docs results --vocab-size 32k") | 
					
						
						|  | print("\n3. Custom batch size for performance:") | 
					
						
						|  | print("   uv run lighton-ocr.py docs results --batch-size 32") | 
					
						
						|  | print("\n4. Test with small sample:") | 
					
						
						|  | print("   uv run lighton-ocr.py large-dataset test --max-samples 50 --shuffle") | 
					
						
						|  | print("\n5. Original image size (no resize):") | 
					
						
						|  | print("   uv run lighton-ocr.py docs output --no-resize") | 
					
						
						|  | print("\n6. Running on HF Jobs:") | 
					
						
						|  | print("   hf jobs uv run --flavor l4x1 \\") | 
					
						
						|  | print("     -e HF_TOKEN=$(python3 -c \"from huggingface_hub import get_token; print(get_token())\") \\") | 
					
						
						|  | print("     -e HF_HUB_ENABLE_HF_TRANSFER=1 \\") | 
					
						
						|  | print("     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \\") | 
					
						
						|  | print("       input-dataset output-dataset --vocab-size 32k") | 
					
						
						|  | print("\n" + "=" * 80) | 
					
						
						|  | print("\nVocabulary Size Options:") | 
					
						
						|  | print("  151k - Full vocabulary (all languages)") | 
					
						
						|  | print("  32k  - European languages (~12% faster)") | 
					
						
						|  | print("  16k  - European languages (~12% faster)") | 
					
						
						|  | print("\nFor full help, run: uv run lighton-ocr.py --help") | 
					
						
						|  | sys.exit(0) | 
					
						
						|  |  | 
					
						
						|  | parser = argparse.ArgumentParser( | 
					
						
						|  | description="Document OCR using LightOnOCR (fast 1B model)", | 
					
						
						|  | formatter_class=argparse.RawDescriptionHelpFormatter, | 
					
						
						|  | epilog=""" | 
					
						
						|  | Vocabulary Size Options: | 
					
						
						|  | 151k    Full vocabulary supporting all languages (default) | 
					
						
						|  | 32k     European languages optimized (~12% faster decoding) | 
					
						
						|  | 16k     European languages optimized (~12% faster decoding) | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  | # Basic text OCR with full vocabulary | 
					
						
						|  | uv run lighton-ocr.py my-docs analyzed-docs | 
					
						
						|  |  | 
					
						
						|  | # Fast processing for European languages | 
					
						
						|  | uv run lighton-ocr.py papers results --vocab-size 32k | 
					
						
						|  |  | 
					
						
						|  | # Test with random sampling | 
					
						
						|  | uv run lighton-ocr.py large-dataset test --max-samples 50 --shuffle | 
					
						
						|  |  | 
					
						
						|  | # Custom batch size for GPU optimization | 
					
						
						|  | uv run lighton-ocr.py dataset output --batch-size 32 --gpu-memory-utilization 0.9 | 
					
						
						|  | """, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") | 
					
						
						|  | parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--image-column", | 
					
						
						|  | default="image", | 
					
						
						|  | help="Column containing images (default: image)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--batch-size", | 
					
						
						|  | type=int, | 
					
						
						|  | default=16, | 
					
						
						|  | help="Batch size for processing (default: 16)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--vocab-size", | 
					
						
						|  | default="151k", | 
					
						
						|  | choices=list(MODEL_VARIANTS.keys()), | 
					
						
						|  | help="Vocabulary size variant (default: 151k)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-model-len", | 
					
						
						|  | type=int, | 
					
						
						|  | default=8192, | 
					
						
						|  | help="Maximum model context length (default: 8192)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-tokens", | 
					
						
						|  | type=int, | 
					
						
						|  | default=6500, | 
					
						
						|  | help="Maximum tokens to generate (default: 6500)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--temperature", | 
					
						
						|  | type=float, | 
					
						
						|  | default=0.2, | 
					
						
						|  | help="Sampling temperature (default: 0.2)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--top-p", | 
					
						
						|  | type=float, | 
					
						
						|  | default=0.9, | 
					
						
						|  | help="Top-p sampling parameter (default: 0.9)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--gpu-memory-utilization", | 
					
						
						|  | type=float, | 
					
						
						|  | default=0.8, | 
					
						
						|  | help="GPU memory utilization (default: 0.8)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--target-size", | 
					
						
						|  | type=int, | 
					
						
						|  | default=1288, | 
					
						
						|  | help="Target size for longest image dimension in pixels (default: 1288)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--no-resize", | 
					
						
						|  | action="store_true", | 
					
						
						|  | help="Don't resize images (use original size)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument("--hf-token", help="Hugging Face API token") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--split", default="train", help="Dataset split to use (default: train)" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-samples", | 
					
						
						|  | type=int, | 
					
						
						|  | help="Maximum number of samples to process (for testing)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--private", action="store_true", help="Make output dataset private" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--shuffle", action="store_true", help="Shuffle dataset before processing" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--seed", | 
					
						
						|  | type=int, | 
					
						
						|  | default=42, | 
					
						
						|  | help="Random seed for shuffling (default: 42)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--output-column", | 
					
						
						|  | default="markdown", | 
					
						
						|  | help="Column name for output text (default: markdown)", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  | main( | 
					
						
						|  | input_dataset=args.input_dataset, | 
					
						
						|  | output_dataset=args.output_dataset, | 
					
						
						|  | image_column=args.image_column, | 
					
						
						|  | batch_size=args.batch_size, | 
					
						
						|  | vocab_size=args.vocab_size, | 
					
						
						|  | max_model_len=args.max_model_len, | 
					
						
						|  | max_tokens=args.max_tokens, | 
					
						
						|  | temperature=args.temperature, | 
					
						
						|  | top_p=args.top_p, | 
					
						
						|  | gpu_memory_utilization=args.gpu_memory_utilization, | 
					
						
						|  | target_size=args.target_size, | 
					
						
						|  | no_resize=args.no_resize, | 
					
						
						|  | hf_token=args.hf_token, | 
					
						
						|  | split=args.split, | 
					
						
						|  | max_samples=args.max_samples, | 
					
						
						|  | private=args.private, | 
					
						
						|  | shuffle=args.shuffle, | 
					
						
						|  | seed=args.seed, | 
					
						
						|  | output_column=args.output_column, | 
					
						
						|  | ) | 
					
						
						|  |  |