|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Convert document images to markdown using olmOCR-2 with vLLM. | 
					
						
						|  |  | 
					
						
						|  | This script processes images through the olmOCR-2-7B model to extract | 
					
						
						|  | text and structure as markdown, optimized for document understanding. | 
					
						
						|  |  | 
					
						
						|  | Features: | 
					
						
						|  | - LaTeX equation recognition | 
					
						
						|  | - HTML table extraction | 
					
						
						|  | - Document structure preservation (headers, lists, formatting) | 
					
						
						|  | - Rotation detection and correction metadata | 
					
						
						|  | - Figure and chart descriptions | 
					
						
						|  | - Natural reading order inference | 
					
						
						|  | - High-quality OCR for various document types | 
					
						
						|  |  | 
					
						
						|  | Model: allenai/olmOCR-2-7B-1025-FP8 | 
					
						
						|  | Based on: Qwen2.5-VL-7B-Instruct fine-tuned on olmOCR-mix | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import argparse | 
					
						
						|  | import base64 | 
					
						
						|  | import io | 
					
						
						|  | import json | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import re | 
					
						
						|  | import sys | 
					
						
						|  | from datetime import datetime | 
					
						
						|  | from typing import Any, Dict, List, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import yaml | 
					
						
						|  | from datasets import load_dataset | 
					
						
						|  | from huggingface_hub import DatasetCard, login | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from toolz import partition_all | 
					
						
						|  | from tqdm.auto import tqdm | 
					
						
						|  | from vllm import LLM, SamplingParams | 
					
						
						|  | from vllm.sampling_params import GuidedDecodingParams | 
					
						
						|  |  | 
					
						
						|  | logging.basicConfig(level=logging.INFO) | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | OLMOCR_PROMPT = ( | 
					
						
						|  | "Attached is one page of a document that you must process. " | 
					
						
						|  | "Just return the plain text representation of this document as if you were reading it naturally. " | 
					
						
						|  | "Convert equations to LateX and tables to HTML.\n" | 
					
						
						|  | "If there are any figures or charts, label them with the following markdown syntax " | 
					
						
						|  | "\n" | 
					
						
						|  | "Return your output as markdown, with a front matter section on top specifying values for the " | 
					
						
						|  | "primary_language, is_rotation_valid, rotation_correction, is_table, and is_diagram parameters." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_cuda_availability(): | 
					
						
						|  | """Check if CUDA is available and exit if not.""" | 
					
						
						|  | if not torch.cuda.is_available(): | 
					
						
						|  | logger.error("CUDA is not available. This script requires a GPU.") | 
					
						
						|  | logger.error("Please run on a machine with a CUDA-capable GPU.") | 
					
						
						|  | sys.exit(1) | 
					
						
						|  | else: | 
					
						
						|  | logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def parse_yaml_frontmatter(text: str) -> tuple[dict, str]: | 
					
						
						|  | """ | 
					
						
						|  | Parse YAML front matter from olmOCR output. | 
					
						
						|  |  | 
					
						
						|  | Expected format: | 
					
						
						|  | --- | 
					
						
						|  | primary_language: en | 
					
						
						|  | is_rotation_valid: true | 
					
						
						|  | rotation_correction: 0 | 
					
						
						|  | is_table: false | 
					
						
						|  | is_diagram: false | 
					
						
						|  | --- | 
					
						
						|  | # Document content here... | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | (metadata_dict, content_without_frontmatter) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | pattern = r"^---\s*\n(.*?)\n---\s*\n(.*)$" | 
					
						
						|  | match = re.match(pattern, text.strip(), re.DOTALL) | 
					
						
						|  |  | 
					
						
						|  | if match: | 
					
						
						|  | yaml_str = match.group(1) | 
					
						
						|  | content = match.group(2) | 
					
						
						|  | try: | 
					
						
						|  | metadata = yaml.safe_load(yaml_str) | 
					
						
						|  | return metadata or {}, content | 
					
						
						|  | except yaml.YAMLError as e: | 
					
						
						|  | logger.warning(f"Failed to parse YAML front matter: {e}") | 
					
						
						|  | return {}, text | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | logger.warning("No YAML front matter found in output") | 
					
						
						|  | return {}, text | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def make_ocr_message( | 
					
						
						|  | image: Union[Image.Image, Dict[str, Any], str], | 
					
						
						|  | prompt: str = OLMOCR_PROMPT, | 
					
						
						|  | target_longest_dim: int = 1288, | 
					
						
						|  | ) -> List[Dict]: | 
					
						
						|  | """Create chat message for olmOCR processing. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | image: Input image (PIL Image, dict with bytes, or path) | 
					
						
						|  | prompt: OCR prompt text | 
					
						
						|  | target_longest_dim: Target size for longest image dimension (default 1288, matching olmOCR) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image, Image.Image): | 
					
						
						|  | pil_img = image | 
					
						
						|  | elif isinstance(image, dict) and "bytes" in image: | 
					
						
						|  | pil_img = Image.open(io.BytesIO(image["bytes"])) | 
					
						
						|  | elif isinstance(image, str): | 
					
						
						|  | pil_img = Image.open(image) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unsupported image type: {type(image)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | width, height = pil_img.size | 
					
						
						|  | longest_side = max(width, height) | 
					
						
						|  | if longest_side != target_longest_dim: | 
					
						
						|  | scale = target_longest_dim / longest_side | 
					
						
						|  | new_width = int(width * scale) | 
					
						
						|  | new_height = int(height * scale) | 
					
						
						|  | pil_img = pil_img.resize((new_width, new_height), Image.Resampling.LANCZOS) | 
					
						
						|  | logger.debug(f"Resized image from {width}x{height} to {new_width}x{new_height}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | buf = io.BytesIO() | 
					
						
						|  | pil_img.save(buf, format="PNG") | 
					
						
						|  | data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | { | 
					
						
						|  | "role": "user", | 
					
						
						|  | "content": [ | 
					
						
						|  | {"type": "text", "text": prompt}, | 
					
						
						|  | {"type": "image_url", "image_url": {"url": data_uri}}, | 
					
						
						|  | ], | 
					
						
						|  | } | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_dataset_card( | 
					
						
						|  | source_dataset: str, | 
					
						
						|  | model: str, | 
					
						
						|  | num_samples: int, | 
					
						
						|  | processing_time: str, | 
					
						
						|  | batch_size: int, | 
					
						
						|  | max_model_len: int, | 
					
						
						|  | max_tokens: int, | 
					
						
						|  | gpu_memory_utilization: float, | 
					
						
						|  | image_column: str = "image", | 
					
						
						|  | split: str = "train", | 
					
						
						|  | ) -> str: | 
					
						
						|  | """Create a dataset card documenting the OCR process.""" | 
					
						
						|  | model_name = model.split("/")[-1] | 
					
						
						|  |  | 
					
						
						|  | return f"""--- | 
					
						
						|  | tags: | 
					
						
						|  | - ocr | 
					
						
						|  | - document-processing | 
					
						
						|  | - olmocr | 
					
						
						|  | - markdown | 
					
						
						|  | - uv-script | 
					
						
						|  | - generated | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # Document OCR using {model_name} | 
					
						
						|  |  | 
					
						
						|  | This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using olmOCR-2-7B. | 
					
						
						|  |  | 
					
						
						|  | ## Processing Details | 
					
						
						|  |  | 
					
						
						|  | - **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) | 
					
						
						|  | - **Model**: [{model}](https://huggingface.co/{model}) | 
					
						
						|  | - **Number of Samples**: {num_samples:,} | 
					
						
						|  | - **Processing Time**: {processing_time} | 
					
						
						|  | - **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} | 
					
						
						|  |  | 
					
						
						|  | ### Configuration | 
					
						
						|  |  | 
					
						
						|  | - **Image Column**: `{image_column}` | 
					
						
						|  | - **Output Column**: `markdown` | 
					
						
						|  | - **Dataset Split**: `{split}` | 
					
						
						|  | - **Batch Size**: {batch_size} | 
					
						
						|  | - **Max Model Length**: {max_model_len:,} tokens | 
					
						
						|  | - **Max Output Tokens**: {max_tokens:,} | 
					
						
						|  | - **GPU Memory Utilization**: {gpu_memory_utilization:.1%} | 
					
						
						|  |  | 
					
						
						|  | ## Model Information | 
					
						
						|  |  | 
					
						
						|  | olmOCR-2-7B is a high-quality document OCR model based on Qwen2.5-VL-7B-Instruct, fine-tuned on olmOCR-mix-1025 dataset and optimized with GRPO reinforcement learning. | 
					
						
						|  |  | 
					
						
						|  | Key features: | 
					
						
						|  | - 📐 **LaTeX equations** - Mathematical formulas in LaTeX format | 
					
						
						|  | - 📊 **HTML tables** - Structured table extraction | 
					
						
						|  | - 📝 **Document structure** - Headers, lists, formatting preserved | 
					
						
						|  | - 🖼️ **Figure descriptions** - Charts and figures labeled with descriptions | 
					
						
						|  | - 🔄 **Rotation detection** - Metadata about document orientation | 
					
						
						|  | - 📑 **Natural reading order** - Handles multi-column and complex layouts | 
					
						
						|  | - 🎯 **High accuracy** - Scores 82.4 ± 1.1 on olmOCR-Bench | 
					
						
						|  |  | 
					
						
						|  | ## Output Format | 
					
						
						|  |  | 
					
						
						|  | Each row contains: | 
					
						
						|  | - Original image from source dataset | 
					
						
						|  | - `markdown`: Extracted document content in markdown format | 
					
						
						|  | - `olmocr_metadata`: JSON with document metadata (language, rotation, table/diagram flags) | 
					
						
						|  |  | 
					
						
						|  | ## Columns | 
					
						
						|  |  | 
					
						
						|  | - `{image_column}`: Original document image | 
					
						
						|  | - `markdown`: Extracted text and structure in markdown | 
					
						
						|  | - `olmocr_metadata`: Document metadata (primary_language, is_rotation_valid, rotation_correction, is_table, is_diagram) | 
					
						
						|  | - `inference_info`: Processing metadata (model, script version, timestamp) | 
					
						
						|  |  | 
					
						
						|  | ## Reproduction | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | # Using HF Jobs (recommended) | 
					
						
						|  | hf jobs uv run --flavor l4x1 \\ | 
					
						
						|  | -s HF_TOKEN \\ | 
					
						
						|  | https://huggingface.co/datasets/uv-scripts/ocr/raw/main/olmocr2-vllm.py \\ | 
					
						
						|  | {source_dataset} \\ | 
					
						
						|  | your-username/output-dataset | 
					
						
						|  |  | 
					
						
						|  | # Local with GPU | 
					
						
						|  | uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/olmocr2-vllm.py \\ | 
					
						
						|  | {source_dataset} \\ | 
					
						
						|  | your-username/output-dataset | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Citation | 
					
						
						|  |  | 
					
						
						|  | ```bibtex | 
					
						
						|  | @misc{{olmocr, | 
					
						
						|  | title={{{{olmOCR: Unlocking Trillions of Tokens in PDFs with Vision Language Models}}}}, | 
					
						
						|  | author={{Jake Poznanski and Jon Borchardt and Jason Dunkelberger and Regan Huff and Daniel Lin and Aman Rangapur and Christopher Wilhelm and Kyle Lo and Luca Soldaini}}, | 
					
						
						|  | year={{2025}}, | 
					
						
						|  | eprint={{2502.18443}}, | 
					
						
						|  | archivePrefix={{arXiv}}, | 
					
						
						|  | primaryClass={{cs.CL}}, | 
					
						
						|  | url={{https://arxiv.org/abs/2502.18443}}, | 
					
						
						|  | }} | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | --- | 
					
						
						|  | *Generated with [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr)* | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main( | 
					
						
						|  | input_dataset: str, | 
					
						
						|  | output_dataset: str, | 
					
						
						|  | image_column: str = "image", | 
					
						
						|  | output_column: str = "markdown", | 
					
						
						|  | batch_size: int = 16, | 
					
						
						|  | model: str = "allenai/olmOCR-2-7B-1025-FP8", | 
					
						
						|  | max_model_len: int = 16384, | 
					
						
						|  | max_tokens: int = 8192, | 
					
						
						|  | temperature: float = 0.1, | 
					
						
						|  | gpu_memory_utilization: float = 0.8, | 
					
						
						|  | guided_decoding: bool = False, | 
					
						
						|  | hf_token: str = None, | 
					
						
						|  | split: str = "train", | 
					
						
						|  | max_samples: int = None, | 
					
						
						|  | private: bool = False, | 
					
						
						|  | shuffle: bool = False, | 
					
						
						|  | seed: int = 42, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Process a dataset of document images through olmOCR-2 to extract markdown. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | input_dataset: HuggingFace dataset ID containing images | 
					
						
						|  | output_dataset: HuggingFace dataset ID for output | 
					
						
						|  | image_column: Column name containing images | 
					
						
						|  | output_column: Column name for markdown output | 
					
						
						|  | batch_size: Number of images to process at once | 
					
						
						|  | model: HuggingFace model ID for olmOCR | 
					
						
						|  | max_model_len: Maximum context length | 
					
						
						|  | max_tokens: Maximum tokens to generate per image | 
					
						
						|  | temperature: Sampling temperature (0.1 default, matches olmOCR) | 
					
						
						|  | gpu_memory_utilization: Fraction of GPU memory to use | 
					
						
						|  | guided_decoding: Enable guided decoding with regex for YAML front matter | 
					
						
						|  | hf_token: HuggingFace token for authentication | 
					
						
						|  | split: Dataset split to process | 
					
						
						|  | max_samples: Limit number of samples (for testing) | 
					
						
						|  | private: Make output dataset private | 
					
						
						|  | shuffle: Shuffle dataset before processing | 
					
						
						|  | seed: Random seed for shuffling | 
					
						
						|  | """ | 
					
						
						|  | import time | 
					
						
						|  |  | 
					
						
						|  | start_time = time.time() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | check_cuda_availability() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hf_token: | 
					
						
						|  | login(token=hf_token) | 
					
						
						|  | elif "HF_TOKEN" in os.environ: | 
					
						
						|  | login(token=os.environ["HF_TOKEN"]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading dataset: {input_dataset}") | 
					
						
						|  | ds = load_dataset(input_dataset, split=split) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if shuffle: | 
					
						
						|  | logger.info(f"Shuffling dataset with seed {seed}") | 
					
						
						|  | ds = ds.shuffle(seed=seed) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if max_samples: | 
					
						
						|  | logger.info(f"Limiting to {max_samples} samples") | 
					
						
						|  | ds = ds.select(range(min(max_samples, len(ds)))) | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Processing {len(ds)} samples") | 
					
						
						|  | logger.info(f"Output will be written to column: {output_column}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | metadata_column_name = f"{output_column}_metadata" | 
					
						
						|  | inference_info_column = "inference_info" | 
					
						
						|  | logger.info(f"Metadata will be written to column: {metadata_column_name}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Initializing vLLM with model: {model}") | 
					
						
						|  | llm = LLM( | 
					
						
						|  | model=model, | 
					
						
						|  | max_model_len=max_model_len, | 
					
						
						|  | gpu_memory_utilization=gpu_memory_utilization, | 
					
						
						|  | limit_mm_per_prompt={"image": 1}, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sampling_params_kwargs = { | 
					
						
						|  | "temperature": temperature, | 
					
						
						|  | "max_tokens": max_tokens, | 
					
						
						|  | "repetition_penalty": 1.05, | 
					
						
						|  | "stop": ["<|im_end|>", "<|endoftext|>"], | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if guided_decoding: | 
					
						
						|  | logger.info("Enabling guided decoding with YAML front matter regex") | 
					
						
						|  | guided_params = GuidedDecodingParams( | 
					
						
						|  | regex=r"---\nprimary_language: (?:[a-z]{2}|null)\nis_rotation_valid: (?:True|False|true|false)\nrotation_correction: (?:0|90|180|270)\nis_table: (?:True|False|true|false)\nis_diagram: (?:True|False|true|false)\n(?:---|---\n[\s\S]+)" | 
					
						
						|  | ) | 
					
						
						|  | sampling_params_kwargs["guided_decoding"] = guided_params | 
					
						
						|  |  | 
					
						
						|  | sampling_params = SamplingParams(**sampling_params_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_outputs = [] | 
					
						
						|  | all_metadata = [] | 
					
						
						|  |  | 
					
						
						|  | for batch in tqdm( | 
					
						
						|  | list(partition_all(batch_size, ds)), | 
					
						
						|  | desc="Processing batches", | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | messages = [make_ocr_message(item[image_column]) for item in batch] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = llm.chat(messages, sampling_params=sampling_params) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for idx, output in enumerate(outputs): | 
					
						
						|  | response_text = output.outputs[0].text | 
					
						
						|  | finish_reason = output.outputs[0].finish_reason | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if finish_reason != "stop": | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"Generation did not finish naturally (reason: {finish_reason}), output may be incomplete" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | metadata, content = parse_yaml_frontmatter(response_text) | 
					
						
						|  | all_outputs.append(content) | 
					
						
						|  | all_metadata.append(json.dumps(metadata)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_column in ds.column_names: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"Column '{output_column}' already exists, it will be overwritten" | 
					
						
						|  | ) | 
					
						
						|  | ds = ds.remove_columns([output_column]) | 
					
						
						|  | ds = ds.add_column(output_column, all_outputs) | 
					
						
						|  |  | 
					
						
						|  | if metadata_column_name in ds.column_names: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"Column '{metadata_column_name}' already exists, it will be overwritten" | 
					
						
						|  | ) | 
					
						
						|  | ds = ds.remove_columns([metadata_column_name]) | 
					
						
						|  | ds = ds.add_column(metadata_column_name, all_metadata) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inference_info = json.dumps( | 
					
						
						|  | { | 
					
						
						|  | "model": model, | 
					
						
						|  | "script": "olmocr2-vllm.py", | 
					
						
						|  | "version": "1.0.0", | 
					
						
						|  | "timestamp": datetime.now().isoformat(), | 
					
						
						|  | "batch_size": batch_size, | 
					
						
						|  | "max_tokens": max_tokens, | 
					
						
						|  | "temperature": temperature, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inference_info_column in ds.column_names: | 
					
						
						|  |  | 
					
						
						|  | def update_inference_info(example): | 
					
						
						|  | try: | 
					
						
						|  | existing = json.loads(example[inference_info_column]) | 
					
						
						|  | if not isinstance(existing, list): | 
					
						
						|  | existing = [existing] | 
					
						
						|  | except (json.JSONDecodeError, KeyError): | 
					
						
						|  | existing = [] | 
					
						
						|  |  | 
					
						
						|  | existing.append(json.loads(inference_info)) | 
					
						
						|  | return {inference_info_column: json.dumps(existing)} | 
					
						
						|  |  | 
					
						
						|  | ds = ds.map(update_inference_info) | 
					
						
						|  | else: | 
					
						
						|  | ds = ds.add_column(inference_info_column, [inference_info] * len(ds)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elapsed_time = time.time() - start_time | 
					
						
						|  | hours = int(elapsed_time // 3600) | 
					
						
						|  | minutes = int((elapsed_time % 3600) // 60) | 
					
						
						|  | seconds = int(elapsed_time % 60) | 
					
						
						|  | processing_time = f"{hours}h {minutes}m {seconds}s" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | card_content = create_dataset_card( | 
					
						
						|  | source_dataset=input_dataset, | 
					
						
						|  | model=model, | 
					
						
						|  | num_samples=len(ds), | 
					
						
						|  | processing_time=processing_time, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | max_model_len=max_model_len, | 
					
						
						|  | max_tokens=max_tokens, | 
					
						
						|  | gpu_memory_utilization=gpu_memory_utilization, | 
					
						
						|  | image_column=image_column, | 
					
						
						|  | split=split, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Pushing to HuggingFace Hub: {output_dataset}") | 
					
						
						|  | ds.push_to_hub( | 
					
						
						|  | output_dataset, | 
					
						
						|  | private=private, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | card = DatasetCard(card_content) | 
					
						
						|  | card.push_to_hub(output_dataset) | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"✓ Processing complete!") | 
					
						
						|  | logger.info(f"✓ Dataset: https://huggingface.co/datasets/{output_dataset}") | 
					
						
						|  | logger.info(f"✓ Processing time: {processing_time}") | 
					
						
						|  | logger.info(f"✓ Samples processed: {len(ds):,}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | parser = argparse.ArgumentParser( | 
					
						
						|  | description="Convert document images to markdown using olmOCR-2", | 
					
						
						|  | formatter_class=argparse.RawDescriptionHelpFormatter, | 
					
						
						|  | epilog=""" | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | 1. Basic OCR on a dataset: | 
					
						
						|  | uv run olmocr2-vllm.py input-dataset output-dataset | 
					
						
						|  |  | 
					
						
						|  | 2. Test with first 10 samples: | 
					
						
						|  | uv run olmocr2-vllm.py input-dataset output-dataset --max-samples 10 | 
					
						
						|  |  | 
					
						
						|  | 3. Process with custom batch size: | 
					
						
						|  | uv run olmocr2-vllm.py input-dataset output-dataset --batch-size 8 | 
					
						
						|  |  | 
					
						
						|  | 4. Custom image column: | 
					
						
						|  | uv run olmocr2-vllm.py input-dataset output-dataset --image-column page_image | 
					
						
						|  |  | 
					
						
						|  | 5. Private output dataset: | 
					
						
						|  | uv run olmocr2-vllm.py input-dataset output-dataset --private | 
					
						
						|  |  | 
					
						
						|  | 6. Random sampling: | 
					
						
						|  | uv run olmocr2-vllm.py input-dataset output-dataset --max-samples 100 --shuffle | 
					
						
						|  |  | 
					
						
						|  | 7. Running on HuggingFace Jobs: | 
					
						
						|  | hf jobs uv run --flavor l4x1 \\ | 
					
						
						|  | -s HF_TOKEN \\ | 
					
						
						|  | https://huggingface.co/datasets/uv-scripts/ocr/raw/main/olmocr2-vllm.py \\ | 
					
						
						|  | input-dataset output-dataset | 
					
						
						|  |  | 
					
						
						|  | 8. Real example with historical documents: | 
					
						
						|  | hf jobs uv run --flavor l4x1 \\ | 
					
						
						|  | -s HF_TOKEN \\ | 
					
						
						|  | https://huggingface.co/datasets/uv-scripts/ocr/raw/main/olmocr2-vllm.py \\ | 
					
						
						|  | NationalLibraryOfScotland/Britain-and-UK-Handbooks-Dataset \\ | 
					
						
						|  | your-username/handbooks-olmocr \\ | 
					
						
						|  | --max-samples 100 \\ | 
					
						
						|  | --shuffle | 
					
						
						|  | """, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | parser.add_argument("input_dataset", help="Input HuggingFace dataset ID") | 
					
						
						|  | parser.add_argument("output_dataset", help="Output HuggingFace dataset ID") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--image-column", | 
					
						
						|  | default="image", | 
					
						
						|  | help="Column name containing images (default: image)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--output-column", | 
					
						
						|  | default="markdown", | 
					
						
						|  | help="Column name for markdown output (default: markdown)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--batch-size", | 
					
						
						|  | type=int, | 
					
						
						|  | default=16, | 
					
						
						|  | help="Batch size for processing (default: 16)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--model", | 
					
						
						|  | default="allenai/olmOCR-2-7B-1025-FP8", | 
					
						
						|  | help="Model to use (default: allenai/olmOCR-2-7B-1025-FP8)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-model-len", | 
					
						
						|  | type=int, | 
					
						
						|  | default=16384, | 
					
						
						|  | help="Maximum model context length (default: 16384)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-tokens", | 
					
						
						|  | type=int, | 
					
						
						|  | default=8192, | 
					
						
						|  | help="Maximum tokens to generate (default: 8192)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--temperature", | 
					
						
						|  | type=float, | 
					
						
						|  | default=0.1, | 
					
						
						|  | help="Sampling temperature (default: 0.1, matches olmOCR transformers example)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--gpu-memory-utilization", | 
					
						
						|  | type=float, | 
					
						
						|  | default=0.8, | 
					
						
						|  | help="GPU memory utilization (default: 0.8)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--guided-decoding", | 
					
						
						|  | action="store_true", | 
					
						
						|  | help="Enable guided decoding with regex for YAML front matter structure", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--hf-token", | 
					
						
						|  | help="HuggingFace token (or set HF_TOKEN env var)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--split", | 
					
						
						|  | default="train", | 
					
						
						|  | help="Dataset split to process (default: train)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-samples", | 
					
						
						|  | type=int, | 
					
						
						|  | help="Maximum number of samples to process (for testing)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--private", | 
					
						
						|  | action="store_true", | 
					
						
						|  | help="Make output dataset private", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--shuffle", | 
					
						
						|  | action="store_true", | 
					
						
						|  | help="Shuffle dataset before processing", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--seed", | 
					
						
						|  | type=int, | 
					
						
						|  | default=42, | 
					
						
						|  | help="Random seed for shuffling (default: 42)", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  | main( | 
					
						
						|  | input_dataset=args.input_dataset, | 
					
						
						|  | output_dataset=args.output_dataset, | 
					
						
						|  | image_column=args.image_column, | 
					
						
						|  | output_column=args.output_column, | 
					
						
						|  | batch_size=args.batch_size, | 
					
						
						|  | model=args.model, | 
					
						
						|  | max_model_len=args.max_model_len, | 
					
						
						|  | max_tokens=args.max_tokens, | 
					
						
						|  | temperature=args.temperature, | 
					
						
						|  | gpu_memory_utilization=args.gpu_memory_utilization, | 
					
						
						|  | guided_decoding=args.guided_decoding, | 
					
						
						|  | hf_token=args.hf_token, | 
					
						
						|  | split=args.split, | 
					
						
						|  | max_samples=args.max_samples, | 
					
						
						|  | private=args.private, | 
					
						
						|  | shuffle=args.shuffle, | 
					
						
						|  | seed=args.seed, | 
					
						
						|  | ) | 
					
						
						|  |  |