|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Convert document images to markdown using NuMarkdown-8B-Thinking with vLLM. | 
					
						
						|  |  | 
					
						
						|  | This script processes images through the NuMarkdown model to extract | 
					
						
						|  | text with advanced reasoning capabilities, ideal for complex document understanding. | 
					
						
						|  |  | 
					
						
						|  | Features: | 
					
						
						|  | - Reasoning-based document analysis with thinking tokens | 
					
						
						|  | - Superior table extraction and formatting | 
					
						
						|  | - Complex layout understanding | 
					
						
						|  | - Mathematical formula recognition | 
					
						
						|  | - Clean markdown output generation | 
					
						
						|  | - Optional thinking trace inclusion | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import argparse | 
					
						
						|  | import base64 | 
					
						
						|  | import io | 
					
						
						|  | import json | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import re | 
					
						
						|  | import sys | 
					
						
						|  | from typing import Any, Dict, List, Union, Optional, Tuple | 
					
						
						|  | from datetime import datetime | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from datasets import load_dataset | 
					
						
						|  | from huggingface_hub import DatasetCard, HfApi, login | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from toolz import partition_all | 
					
						
						|  | from tqdm.auto import tqdm | 
					
						
						|  | from vllm import LLM, SamplingParams | 
					
						
						|  |  | 
					
						
						|  | logging.basicConfig(level=logging.INFO) | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_cuda_availability(): | 
					
						
						|  | """Check if CUDA is available and exit if not.""" | 
					
						
						|  | if not torch.cuda.is_available(): | 
					
						
						|  | logger.error("CUDA is not available. This script requires a GPU.") | 
					
						
						|  | logger.error("Please run on a machine with a CUDA-capable GPU.") | 
					
						
						|  | sys.exit(1) | 
					
						
						|  | else: | 
					
						
						|  | logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def validate_and_resize_image( | 
					
						
						|  | image: Image.Image, | 
					
						
						|  | min_pixels: int = 100 * 28 * 28, | 
					
						
						|  | max_pixels: int = 5000 * 28 * 28, | 
					
						
						|  | ) -> Image.Image: | 
					
						
						|  | """Validate and resize image to meet pixel constraints if necessary.""" | 
					
						
						|  | width, height = image.size | 
					
						
						|  | total_pixels = width * height | 
					
						
						|  |  | 
					
						
						|  | if total_pixels < min_pixels or total_pixels > max_pixels: | 
					
						
						|  |  | 
					
						
						|  | if total_pixels < min_pixels: | 
					
						
						|  | scale = (min_pixels / total_pixels) ** 0.5 | 
					
						
						|  | else: | 
					
						
						|  | scale = (max_pixels / total_pixels) ** 0.5 | 
					
						
						|  |  | 
					
						
						|  | new_width = int(width * scale) | 
					
						
						|  | new_height = int(height * scale) | 
					
						
						|  |  | 
					
						
						|  | logger.debug(f"Resizing image from {width}x{height} to {new_width}x{new_height}") | 
					
						
						|  | image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) | 
					
						
						|  |  | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def extract_answer_from_thinking(text: str, include_thinking: bool = False) -> str: | 
					
						
						|  | """ | 
					
						
						|  | Extract the final answer from NuMarkdown's thinking output. | 
					
						
						|  |  | 
					
						
						|  | The model generates output in format: | 
					
						
						|  | <think>reasoning process...</think> | 
					
						
						|  | <answer>final markdown output</answer> | 
					
						
						|  | """ | 
					
						
						|  | if include_thinking: | 
					
						
						|  |  | 
					
						
						|  | return text.strip() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | answer_pattern = r'<answer>(.*?)</answer>' | 
					
						
						|  | answer_match = re.search(answer_pattern, text, re.DOTALL) | 
					
						
						|  |  | 
					
						
						|  | if answer_match: | 
					
						
						|  | return answer_match.group(1).strip() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not '<think>' in text and not '<answer>' in text: | 
					
						
						|  | return text.strip() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | think_end = text.find('</think>') | 
					
						
						|  | if think_end != -1: | 
					
						
						|  | remaining = text[think_end + 8:].strip() | 
					
						
						|  |  | 
					
						
						|  | remaining = remaining.replace('<answer>', '').replace('</answer>', '').strip() | 
					
						
						|  | return remaining | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.warning("Could not extract answer from thinking tokens, returning full text") | 
					
						
						|  | return text.strip() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def make_numarkdown_message( | 
					
						
						|  | image: Union[Image.Image, Dict[str, Any], str], | 
					
						
						|  | prompt: str = "Convert this document to markdown. Focus on preserving structure, tables, formulas, and all textual content.", | 
					
						
						|  | ) -> List[Dict]: | 
					
						
						|  | """Create chat message for NuMarkdown processing.""" | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image, Image.Image): | 
					
						
						|  | pil_img = image.convert("RGB") | 
					
						
						|  | elif isinstance(image, dict) and "bytes" in image: | 
					
						
						|  | pil_img = Image.open(io.BytesIO(image["bytes"])).convert("RGB") | 
					
						
						|  | elif isinstance(image, str): | 
					
						
						|  | pil_img = Image.open(image).convert("RGB") | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unsupported image type: {type(image)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pil_img = validate_and_resize_image(pil_img) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | buf = io.BytesIO() | 
					
						
						|  | pil_img.save(buf, format="PNG") | 
					
						
						|  | data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | { | 
					
						
						|  | "role": "user", | 
					
						
						|  | "content": [ | 
					
						
						|  | {"type": "image_url", "image_url": {"url": data_uri}}, | 
					
						
						|  | {"type": "text", "text": prompt}, | 
					
						
						|  | ], | 
					
						
						|  | } | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_dataset_card( | 
					
						
						|  | source_dataset: str, | 
					
						
						|  | model: str, | 
					
						
						|  | num_samples: int, | 
					
						
						|  | processing_time: str, | 
					
						
						|  | batch_size: int, | 
					
						
						|  | max_model_len: int, | 
					
						
						|  | max_tokens: int, | 
					
						
						|  | gpu_memory_utilization: float, | 
					
						
						|  | include_thinking: bool, | 
					
						
						|  | image_column: str = "image", | 
					
						
						|  | split: str = "train", | 
					
						
						|  | ) -> str: | 
					
						
						|  | """Create a dataset card documenting the OCR process.""" | 
					
						
						|  | model_name = model.split("/")[-1] | 
					
						
						|  |  | 
					
						
						|  | return f"""--- | 
					
						
						|  | tags: | 
					
						
						|  | - ocr | 
					
						
						|  | - document-processing | 
					
						
						|  | - numarkdown | 
					
						
						|  | - markdown | 
					
						
						|  | - reasoning | 
					
						
						|  | - thinking-tokens | 
					
						
						|  | - uv-script | 
					
						
						|  | - generated | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # Document OCR using {model_name} | 
					
						
						|  |  | 
					
						
						|  | This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using NuMarkdown-8B-Thinking. | 
					
						
						|  |  | 
					
						
						|  | ## Processing Details | 
					
						
						|  |  | 
					
						
						|  | - **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) | 
					
						
						|  | - **Model**: [{model}](https://huggingface.co/{model}) | 
					
						
						|  | - **Number of Samples**: {num_samples:,} | 
					
						
						|  | - **Processing Time**: {processing_time} | 
					
						
						|  | - **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} | 
					
						
						|  |  | 
					
						
						|  | ### Configuration | 
					
						
						|  |  | 
					
						
						|  | - **Image Column**: `{image_column}` | 
					
						
						|  | - **Output Column**: `markdown` | 
					
						
						|  | - **Dataset Split**: `{split}` | 
					
						
						|  | - **Batch Size**: {batch_size} | 
					
						
						|  | - **Max Model Length**: {max_model_len:,} tokens | 
					
						
						|  | - **Max Output Tokens**: {max_tokens:,} | 
					
						
						|  | - **GPU Memory Utilization**: {gpu_memory_utilization:.1%} | 
					
						
						|  | - **Thinking Traces**: {"Included" if include_thinking else "Excluded (only final answers)"} | 
					
						
						|  |  | 
					
						
						|  | ## Model Information | 
					
						
						|  |  | 
					
						
						|  | NuMarkdown-8B-Thinking is a state-of-the-art reasoning-based document OCR model that excels at: | 
					
						
						|  | - 🧠 **Reasoning Process** - Analyzes document layout before generation | 
					
						
						|  | - 📊 **Complex Tables** - Superior table extraction and formatting | 
					
						
						|  | - 📐 **Mathematical Formulas** - Accurate LaTeX/math notation preservation | 
					
						
						|  | - 📝 **Document Structure** - Maintains hierarchical document organization | 
					
						
						|  | - 🔍 **Layout Analysis** - Understands complex multi-column layouts | 
					
						
						|  | - ✨ **Clean Output** - Generates well-formatted markdown | 
					
						
						|  |  | 
					
						
						|  | ### Thinking Tokens | 
					
						
						|  |  | 
					
						
						|  | This model uses a unique "thinking" process where it: | 
					
						
						|  | 1. Analyzes the document structure internally (`<think>` phase) | 
					
						
						|  | 2. Generates the final markdown output (`<answer>` phase) | 
					
						
						|  |  | 
					
						
						|  | {"The dataset includes both thinking traces and final answers." if include_thinking else "Only the final answers are included (thinking traces removed)."} | 
					
						
						|  |  | 
					
						
						|  | ## Dataset Structure | 
					
						
						|  |  | 
					
						
						|  | The dataset contains all original columns plus: | 
					
						
						|  | - `markdown`: The extracted text in markdown format | 
					
						
						|  | - `inference_info`: JSON list tracking all OCR models applied to this dataset | 
					
						
						|  |  | 
					
						
						|  | ## Usage | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from datasets import load_dataset | 
					
						
						|  | import json | 
					
						
						|  |  | 
					
						
						|  | # Load the dataset | 
					
						
						|  | dataset = load_dataset("{{output_dataset_id}}", split="{split}") | 
					
						
						|  |  | 
					
						
						|  | # Access the markdown text | 
					
						
						|  | for example in dataset: | 
					
						
						|  | print(example["markdown"]) | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | # View all OCR models applied to this dataset | 
					
						
						|  | inference_info = json.loads(dataset[0]["inference_info"]) | 
					
						
						|  | for info in inference_info: | 
					
						
						|  | print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}") | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Reproduction | 
					
						
						|  |  | 
					
						
						|  | This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) NuMarkdown OCR script: | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \\ | 
					
						
						|  | {source_dataset} \\ | 
					
						
						|  | <output-dataset> \\ | 
					
						
						|  | --image-column {image_column} \\ | 
					
						
						|  | --batch-size {batch_size} \\ | 
					
						
						|  | --max-model-len {max_model_len} \\ | 
					
						
						|  | --max-tokens {max_tokens} \\ | 
					
						
						|  | --gpu-memory-utilization {gpu_memory_utilization} \\ | 
					
						
						|  | {"--include-thinking" if include_thinking else ""} | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Performance | 
					
						
						|  |  | 
					
						
						|  | - **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second | 
					
						
						|  | - **GPU Configuration**: vLLM with {gpu_memory_utilization:.0%} GPU memory utilization | 
					
						
						|  | - **Model Size**: 8.29B parameters | 
					
						
						|  |  | 
					
						
						|  | Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main( | 
					
						
						|  | input_dataset: str, | 
					
						
						|  | output_dataset: str, | 
					
						
						|  | image_column: str = "image", | 
					
						
						|  | batch_size: int = 16, | 
					
						
						|  | model: str = "numind/NuMarkdown-8B-Thinking", | 
					
						
						|  | max_model_len: int = 16384, | 
					
						
						|  | max_tokens: int = 8192, | 
					
						
						|  | gpu_memory_utilization: float = 0.9, | 
					
						
						|  | hf_token: str = None, | 
					
						
						|  | split: str = "train", | 
					
						
						|  | max_samples: int = None, | 
					
						
						|  | private: bool = False, | 
					
						
						|  | shuffle: bool = False, | 
					
						
						|  | seed: int = 42, | 
					
						
						|  | include_thinking: bool = False, | 
					
						
						|  | temperature: float = 0.0, | 
					
						
						|  | custom_prompt: Optional[str] = None, | 
					
						
						|  | ): | 
					
						
						|  | """Process images from HF dataset through NuMarkdown model.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | check_cuda_availability() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | start_time = datetime.now() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") | 
					
						
						|  | if HF_TOKEN: | 
					
						
						|  | login(token=HF_TOKEN) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading dataset: {input_dataset}") | 
					
						
						|  | dataset = load_dataset(input_dataset, split=split) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if image_column not in dataset.column_names: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Column '{image_column}' not found. Available: {dataset.column_names}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if shuffle: | 
					
						
						|  | logger.info(f"Shuffling dataset with seed {seed}") | 
					
						
						|  | dataset = dataset.shuffle(seed=seed) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if max_samples: | 
					
						
						|  | dataset = dataset.select(range(min(max_samples, len(dataset)))) | 
					
						
						|  | logger.info(f"Limited to {len(dataset)} samples") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Initializing vLLM with model: {model}") | 
					
						
						|  | llm = LLM( | 
					
						
						|  | model=model, | 
					
						
						|  | trust_remote_code=True, | 
					
						
						|  | max_model_len=max_model_len, | 
					
						
						|  | gpu_memory_utilization=gpu_memory_utilization, | 
					
						
						|  | limit_mm_per_prompt={"image": 1}, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sampling_params = SamplingParams( | 
					
						
						|  | temperature=temperature, | 
					
						
						|  | max_tokens=max_tokens, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt = custom_prompt or "Convert this document to markdown. Focus on preserving structure, tables, formulas, and all textual content." | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_markdown = [] | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Processing {len(dataset)} images in batches of {batch_size}") | 
					
						
						|  | logger.info(f"Including thinking traces: {include_thinking}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for batch_indices in tqdm( | 
					
						
						|  | partition_all(batch_size, range(len(dataset))), | 
					
						
						|  | total=(len(dataset) + batch_size - 1) // batch_size, | 
					
						
						|  | desc="OCR processing", | 
					
						
						|  | ): | 
					
						
						|  | batch_indices = list(batch_indices) | 
					
						
						|  | batch_images = [dataset[i][image_column] for i in batch_indices] | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | batch_messages = [ | 
					
						
						|  | make_numarkdown_message(img, prompt) for img in batch_images | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = llm.chat(batch_messages, sampling_params) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for output in outputs: | 
					
						
						|  | raw_text = output.outputs[0].text.strip() | 
					
						
						|  |  | 
					
						
						|  | markdown_text = extract_answer_from_thinking(raw_text, include_thinking) | 
					
						
						|  | all_markdown.append(markdown_text) | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | logger.error(f"Error processing batch: {e}") | 
					
						
						|  |  | 
					
						
						|  | all_markdown.extend(["[OCR FAILED]"] * len(batch_images)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info("Adding markdown column to dataset") | 
					
						
						|  | dataset = dataset.add_column("markdown", all_markdown) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info("Updating inference_info...") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "inference_info" in dataset.column_names: | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | existing_info = json.loads(dataset[0]["inference_info"]) | 
					
						
						|  | if not isinstance(existing_info, list): | 
					
						
						|  | existing_info = [existing_info] | 
					
						
						|  | except (json.JSONDecodeError, TypeError): | 
					
						
						|  | existing_info = [] | 
					
						
						|  |  | 
					
						
						|  | dataset = dataset.remove_columns(["inference_info"]) | 
					
						
						|  | else: | 
					
						
						|  | existing_info = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_info = { | 
					
						
						|  | "column_name": "markdown", | 
					
						
						|  | "model_id": model, | 
					
						
						|  | "processing_date": datetime.now().isoformat(), | 
					
						
						|  | "batch_size": batch_size, | 
					
						
						|  | "max_tokens": max_tokens, | 
					
						
						|  | "gpu_memory_utilization": gpu_memory_utilization, | 
					
						
						|  | "max_model_len": max_model_len, | 
					
						
						|  | "include_thinking": include_thinking, | 
					
						
						|  | "temperature": temperature, | 
					
						
						|  | "prompt": prompt, | 
					
						
						|  | "script": "numarkdown-ocr.py", | 
					
						
						|  | "script_version": "1.0.0", | 
					
						
						|  | "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py" | 
					
						
						|  | } | 
					
						
						|  | existing_info.append(new_info) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | info_json = json.dumps(existing_info, ensure_ascii=False) | 
					
						
						|  | dataset = dataset.add_column("inference_info", [info_json] * len(dataset)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Pushing to {output_dataset}") | 
					
						
						|  | dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | end_time = datetime.now() | 
					
						
						|  | processing_duration = end_time - start_time | 
					
						
						|  | processing_time = f"{processing_duration.total_seconds() / 60:.1f} minutes" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info("Creating dataset card...") | 
					
						
						|  | card_content = create_dataset_card( | 
					
						
						|  | source_dataset=input_dataset, | 
					
						
						|  | model=model, | 
					
						
						|  | num_samples=len(dataset), | 
					
						
						|  | processing_time=processing_time, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | max_model_len=max_model_len, | 
					
						
						|  | max_tokens=max_tokens, | 
					
						
						|  | gpu_memory_utilization=gpu_memory_utilization, | 
					
						
						|  | include_thinking=include_thinking, | 
					
						
						|  | image_column=image_column, | 
					
						
						|  | split=split, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | full_repo_id = output_dataset | 
					
						
						|  | try: | 
					
						
						|  | card = DatasetCard(card_content) | 
					
						
						|  |  | 
					
						
						|  | if "/" not in output_dataset: | 
					
						
						|  | api = HfApi(token=HF_TOKEN) | 
					
						
						|  | user_info = api.whoami() | 
					
						
						|  | full_repo_id = f"{user_info['name']}/{output_dataset}" | 
					
						
						|  | logger.info(f"Using full repo ID: {full_repo_id}") | 
					
						
						|  |  | 
					
						
						|  | card.push_to_hub(full_repo_id, token=HF_TOKEN) | 
					
						
						|  | logger.info("✅ Dataset card created and pushed!") | 
					
						
						|  | except Exception as e: | 
					
						
						|  | logger.warning(f"Could not push dataset card: {e}") | 
					
						
						|  | logger.info("Dataset was successfully created but card upload failed. You can add it manually.") | 
					
						
						|  |  | 
					
						
						|  | logger.info("✅ OCR conversion complete!") | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Dataset available at: https://huggingface.co/datasets/{full_repo_id}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  |  | 
					
						
						|  | if len(sys.argv) == 1: | 
					
						
						|  | print("=" * 80) | 
					
						
						|  | print("NuMarkdown-8B-Thinking OCR with Reasoning") | 
					
						
						|  | print("=" * 80) | 
					
						
						|  | print("\nThis script converts document images to markdown using") | 
					
						
						|  | print("the NuMarkdown-8B-Thinking model with advanced reasoning capabilities.") | 
					
						
						|  | print("\nFeatures:") | 
					
						
						|  | print("- 🧠 Reasoning-based document analysis") | 
					
						
						|  | print("- 📊 Superior table extraction and formatting") | 
					
						
						|  | print("- 📐 Mathematical formula recognition") | 
					
						
						|  | print("- 📝 Complex layout understanding") | 
					
						
						|  | print("- ✨ Clean markdown generation") | 
					
						
						|  | print("- 🔍 Optional thinking trace inclusion") | 
					
						
						|  | print("\nExample usage:") | 
					
						
						|  | print("\n1. Basic OCR conversion:") | 
					
						
						|  | print("   uv run numarkdown-ocr.py document-images markdown-docs") | 
					
						
						|  | print("\n2. Include thinking traces:") | 
					
						
						|  | print("   uv run numarkdown-ocr.py complex-docs analyzed-docs --include-thinking") | 
					
						
						|  | print("\n3. With custom settings:") | 
					
						
						|  | print("   uv run numarkdown-ocr.py scientific-papers extracted-text \\") | 
					
						
						|  | print("       --batch-size 8 \\") | 
					
						
						|  | print("       --max-tokens 8192 \\") | 
					
						
						|  | print("       --gpu-memory-utilization 0.9") | 
					
						
						|  | print("\n4. Process a subset for testing:") | 
					
						
						|  | print("   uv run numarkdown-ocr.py large-dataset test-output --max-samples 10") | 
					
						
						|  | print("\n5. Custom prompt for specific needs:") | 
					
						
						|  | print("   uv run numarkdown-ocr.py invoices invoice-data \\") | 
					
						
						|  | print('       --custom-prompt "Extract all invoice details including line items"') | 
					
						
						|  | print("\n6. Running on HF Jobs:") | 
					
						
						|  | print("   hf jobs uv run --flavor l4x1 \\") | 
					
						
						|  | print('     -e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\') | 
					
						
						|  | print("     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \\") | 
					
						
						|  | print("       your-document-dataset \\") | 
					
						
						|  | print("       your-markdown-output") | 
					
						
						|  | print("\n" + "=" * 80) | 
					
						
						|  | print("\nFor full help, run: uv run numarkdown-ocr.py --help") | 
					
						
						|  | sys.exit(0) | 
					
						
						|  |  | 
					
						
						|  | parser = argparse.ArgumentParser( | 
					
						
						|  | description="OCR images to markdown using NuMarkdown-8B-Thinking with reasoning", | 
					
						
						|  | formatter_class=argparse.RawDescriptionHelpFormatter, | 
					
						
						|  | epilog=""" | 
					
						
						|  | Examples: | 
					
						
						|  | # Basic usage | 
					
						
						|  | uv run numarkdown-ocr.py my-images-dataset ocr-results | 
					
						
						|  |  | 
					
						
						|  | # Include thinking traces in output | 
					
						
						|  | uv run numarkdown-ocr.py documents analyzed-docs --include-thinking | 
					
						
						|  |  | 
					
						
						|  | # Process subset for testing | 
					
						
						|  | uv run numarkdown-ocr.py large-dataset test-output --max-samples 100 | 
					
						
						|  |  | 
					
						
						|  | # Custom prompt for specific extraction | 
					
						
						|  | uv run numarkdown-ocr.py forms form-data --custom-prompt "Extract all form fields and values" | 
					
						
						|  |  | 
					
						
						|  | # Random sample from dataset | 
					
						
						|  | uv run numarkdown-ocr.py ordered-dataset random-sample --max-samples 50 --shuffle | 
					
						
						|  | """, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") | 
					
						
						|  | parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--image-column", | 
					
						
						|  | default="image", | 
					
						
						|  | help="Column containing images (default: image)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--batch-size", | 
					
						
						|  | type=int, | 
					
						
						|  | default=16, | 
					
						
						|  | help="Batch size for processing (default: 16, lower than others due to model size)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--model", | 
					
						
						|  | default="numind/NuMarkdown-8B-Thinking", | 
					
						
						|  | help="Model to use (default: numind/NuMarkdown-8B-Thinking)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-model-len", | 
					
						
						|  | type=int, | 
					
						
						|  | default=16384, | 
					
						
						|  | help="Maximum model context length (default: 16384)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-tokens", | 
					
						
						|  | type=int, | 
					
						
						|  | default=8192, | 
					
						
						|  | help="Maximum tokens to generate (default: 8192)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--gpu-memory-utilization", | 
					
						
						|  | type=float, | 
					
						
						|  | default=0.9, | 
					
						
						|  | help="GPU memory utilization (default: 0.9)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument("--hf-token", help="Hugging Face API token") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--split", default="train", help="Dataset split to use (default: train)" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-samples", | 
					
						
						|  | type=int, | 
					
						
						|  | help="Maximum number of samples to process (for testing)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--private", action="store_true", help="Make output dataset private" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--shuffle", | 
					
						
						|  | action="store_true", | 
					
						
						|  | help="Shuffle the dataset before processing (useful for random sampling)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--seed", | 
					
						
						|  | type=int, | 
					
						
						|  | default=42, | 
					
						
						|  | help="Random seed for shuffling (default: 42)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--include-thinking", | 
					
						
						|  | action="store_true", | 
					
						
						|  | help="Include thinking traces in output (default: only final answers)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--temperature", | 
					
						
						|  | type=float, | 
					
						
						|  | default=0.0, | 
					
						
						|  | help="Temperature for generation (default: 0.0 for deterministic)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--custom-prompt", | 
					
						
						|  | type=str, | 
					
						
						|  | help="Custom prompt for the model (overrides default)", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  | main( | 
					
						
						|  | input_dataset=args.input_dataset, | 
					
						
						|  | output_dataset=args.output_dataset, | 
					
						
						|  | image_column=args.image_column, | 
					
						
						|  | batch_size=args.batch_size, | 
					
						
						|  | model=args.model, | 
					
						
						|  | max_model_len=args.max_model_len, | 
					
						
						|  | max_tokens=args.max_tokens, | 
					
						
						|  | gpu_memory_utilization=args.gpu_memory_utilization, | 
					
						
						|  | hf_token=args.hf_token, | 
					
						
						|  | split=args.split, | 
					
						
						|  | max_samples=args.max_samples, | 
					
						
						|  | private=args.private, | 
					
						
						|  | shuffle=args.shuffle, | 
					
						
						|  | seed=args.seed, | 
					
						
						|  | include_thinking=args.include_thinking, | 
					
						
						|  | temperature=args.temperature, | 
					
						
						|  | custom_prompt=args.custom_prompt, | 
					
						
						|  | ) |