davanstrien HF Staff Claude commited on
Commit
0e62664
Β·
1 Parent(s): 916ff8e

Add LightOnOCR script for fast document OCR

Browse files

Adds lighton-ocr.py - a UV script for processing documents with
LightOnOCR, a compact 1B OCR model optimized for production speed.

Features:
- Fast: 5.71 pages/sec on H100 GPU
- Compact: Only 1B parameters
- 3 vocabulary variants (151k/32k/16k tokens)
- European language optimization (12% faster with 32k/16k)
- LaTeX formula and table extraction
- Markdown output format
- Image preprocessing (1288px target size)

Based on dots-ocr.py template with adaptations:
- LightOnOCR-specific sampling params (temp=0.2, top_p=0.9)
- Automatic image resizing to optimal dimensions
- Vocabulary size selection
- Simplified prompt handling (no special modes)

Model: lightonai/LightOnOCR-1B-1025
vLLM: Officially supported in model registry
Blog: https://huggingface.co/blog/lightonai/lightonocr

πŸ€– Generated with Claude Code

Co-Authored-By: Claude <noreply@anthropic.com>

Files changed (1) hide show
  1. lighton-ocr.py +628 -0
lighton-ocr.py ADDED
@@ -0,0 +1,628 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.11"
3
+ # dependencies = [
4
+ # "datasets",
5
+ # "huggingface-hub[hf_transfer]",
6
+ # "pillow",
7
+ # "vllm>=0.9.1",
8
+ # "tqdm",
9
+ # "toolz",
10
+ # "torch",
11
+ # ]
12
+ #
13
+ # ///
14
+
15
+ """
16
+ Convert document images to markdown using LightOnOCR with vLLM.
17
+
18
+ LightOnOCR is a compact 1B multilingual OCR model optimized for production speed.
19
+ Combines Pixtral ViT encoder with Qwen3 language model for efficient document parsing.
20
+
21
+ Features:
22
+ - ⚑ Fastest: 5.71 pages/sec on H100 GPU
23
+ - 🎯 Compact: Only 1B parameters
24
+ - 🌍 Multilingual with European language optimization
25
+ - πŸ“ LaTeX formula recognition
26
+ - πŸ“Š Table extraction (markdown format)
27
+ - πŸ“ Document structure preservation
28
+ - πŸ”€ 3 vocabulary sizes (151k/32k/16k tokens)
29
+
30
+ Model: lightonai/LightOnOCR-1B-1025
31
+ vLLM: Officially supported in model registry
32
+ Performance: 76.1% overall benchmark score
33
+ """
34
+
35
+ import argparse
36
+ import base64
37
+ import io
38
+ import json
39
+ import logging
40
+ import os
41
+ import sys
42
+ from typing import Any, Dict, List, Union
43
+ from datetime import datetime
44
+
45
+ import torch
46
+ from datasets import load_dataset
47
+ from huggingface_hub import DatasetCard, login
48
+ from PIL import Image
49
+ from toolz import partition_all
50
+ from tqdm.auto import tqdm
51
+ from vllm import LLM, SamplingParams
52
+
53
+ logging.basicConfig(level=logging.INFO)
54
+ logger = logging.getLogger(__name__)
55
+
56
+
57
+ # Model variants with different vocabulary sizes
58
+ MODEL_VARIANTS = {
59
+ "151k": "lightonai/LightOnOCR-1B-1025", # Full vocabulary (default)
60
+ "32k": "lightonai/LightOnOCR-0.9B-32k-1025", # European languages optimized
61
+ "16k": "lightonai/LightOnOCR-0.9B-16k-1025", # European languages optimized
62
+ }
63
+
64
+
65
+ def check_cuda_availability():
66
+ """Check if CUDA is available and exit if not."""
67
+ if not torch.cuda.is_available():
68
+ logger.error("CUDA is not available. This script requires a GPU.")
69
+ logger.error("Please run on a machine with a CUDA-capable GPU.")
70
+ sys.exit(1)
71
+ else:
72
+ logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
73
+
74
+
75
+ def resize_image_to_target(image: Image.Image, target_size: int = 1288) -> Image.Image:
76
+ """
77
+ Resize image so longest dimension is target_size while maintaining aspect ratio.
78
+
79
+ LightOnOCR is optimized for 1280-1300px longest dimension at 300 DPI.
80
+ """
81
+ width, height = image.size
82
+
83
+ # If image is already smaller, don't upscale
84
+ if max(width, height) <= target_size:
85
+ return image
86
+
87
+ # Calculate new dimensions maintaining aspect ratio
88
+ if width > height:
89
+ new_width = target_size
90
+ new_height = int(height * (target_size / width))
91
+ else:
92
+ new_height = target_size
93
+ new_width = int(width * (target_size / height))
94
+
95
+ return image.resize((new_width, new_height), Image.Resampling.LANCZOS)
96
+
97
+
98
+ def make_ocr_message(
99
+ image: Union[Image.Image, Dict[str, Any], str],
100
+ resize: bool = True,
101
+ target_size: int = 1288,
102
+ ) -> List[Dict]:
103
+ """
104
+ Create chat message for OCR processing.
105
+
106
+ LightOnOCR expects images at 1280-1300px longest dimension for optimal results.
107
+ """
108
+ # Convert to PIL Image if needed
109
+ if isinstance(image, Image.Image):
110
+ pil_img = image
111
+ elif isinstance(image, dict) and "bytes" in image:
112
+ pil_img = Image.open(io.BytesIO(image["bytes"]))
113
+ elif isinstance(image, str):
114
+ pil_img = Image.open(image)
115
+ else:
116
+ raise ValueError(f"Unsupported image type: {type(image)}")
117
+
118
+ # Convert to RGB
119
+ pil_img = pil_img.convert("RGB")
120
+
121
+ # Resize to optimal dimensions for LightOnOCR
122
+ if resize:
123
+ pil_img = resize_image_to_target(pil_img, target_size)
124
+ logger.debug(f"Resized image to {pil_img.size}")
125
+
126
+ # Convert to base64 data URI
127
+ buf = io.BytesIO()
128
+ pil_img.save(buf, format="PNG")
129
+ data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
130
+
131
+ # LightOnOCR uses simple message format (no explicit prompt text needed)
132
+ return [
133
+ {
134
+ "role": "user",
135
+ "content": [
136
+ {"type": "image_url", "image_url": {"url": data_uri}},
137
+ ],
138
+ }
139
+ ]
140
+
141
+
142
+ def create_dataset_card(
143
+ source_dataset: str,
144
+ model: str,
145
+ vocab_size: str,
146
+ num_samples: int,
147
+ processing_time: str,
148
+ batch_size: int,
149
+ max_model_len: int,
150
+ max_tokens: int,
151
+ gpu_memory_utilization: float,
152
+ temperature: float,
153
+ top_p: float,
154
+ target_size: int,
155
+ image_column: str = "image",
156
+ split: str = "train",
157
+ ) -> str:
158
+ """Create a dataset card documenting the OCR process."""
159
+ model_name = model.split("/")[-1]
160
+
161
+ return f"""---
162
+ tags:
163
+ - ocr
164
+ - document-processing
165
+ - lighton-ocr
166
+ - markdown
167
+ - uv-script
168
+ - generated
169
+ ---
170
+
171
+ # Document OCR using {model_name}
172
+
173
+ This dataset contains OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using LightOnOCR, a fast and compact 1B OCR model.
174
+
175
+ ## Processing Details
176
+
177
+ - **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
178
+ - **Model**: [{model}](https://huggingface.co/{model})
179
+ - **Vocabulary Size**: {vocab_size} tokens
180
+ - **Number of Samples**: {num_samples:,}
181
+ - **Processing Time**: {processing_time}
182
+ - **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}
183
+
184
+ ### Configuration
185
+
186
+ - **Image Column**: `{image_column}`
187
+ - **Output Column**: `markdown`
188
+ - **Dataset Split**: `{split}`
189
+ - **Batch Size**: {batch_size}
190
+ - **Target Image Size**: {target_size}px (longest dimension)
191
+ - **Max Model Length**: {max_model_len:,} tokens
192
+ - **Max Output Tokens**: {max_tokens:,}
193
+ - **Temperature**: {temperature}
194
+ - **Top P**: {top_p}
195
+ - **GPU Memory Utilization**: {gpu_memory_utilization:.1%}
196
+
197
+ ## Model Information
198
+
199
+ LightOnOCR is a fast, compact OCR model that excels at:
200
+ - ⚑ **Production Speed** - 5.71 pages/second on H100 GPU
201
+ - 🎯 **Compact Size** - Only 1B parameters
202
+ - πŸ“ **LaTeX formulas** - Mathematical notation in LaTeX format
203
+ - πŸ“Š **Tables** - Extracted and formatted as markdown
204
+ - πŸ“ **Document structure** - Hierarchy and layout preservation
205
+ - 🌍 **Multilingual** - Optimized for European languages
206
+ - πŸ”€ **Flexible vocabulary** - 151k/32k/16k token variants
207
+
208
+ ### Vocabulary Variants
209
+
210
+ - **151k tokens**: Full vocabulary, supports all languages
211
+ - **32k tokens**: European languages optimized (~12% faster decoding)
212
+ - **16k tokens**: European languages optimized (~12% faster decoding)
213
+
214
+ ## Dataset Structure
215
+
216
+ The dataset contains all original columns plus:
217
+ - `markdown`: The extracted text in markdown format with LaTeX formulas
218
+ - `inference_info`: JSON list tracking all OCR models applied to this dataset
219
+
220
+ ## Usage
221
+
222
+ ```python
223
+ from datasets import load_dataset
224
+ import json
225
+
226
+ # Load the dataset
227
+ dataset = load_dataset("{{output_dataset_id}}", split="{split}")
228
+
229
+ # Access the markdown text
230
+ for example in dataset:
231
+ print(example["markdown"])
232
+ break
233
+
234
+ # View all OCR models applied to this dataset
235
+ inference_info = json.loads(dataset[0]["inference_info"])
236
+ for info in inference_info:
237
+ print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}")
238
+ ```
239
+
240
+ ## Reproduction
241
+
242
+ This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) LightOnOCR script:
243
+
244
+ ```bash
245
+ uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \\
246
+ {source_dataset} \\
247
+ <output-dataset> \\
248
+ --vocab-size {vocab_size} \\
249
+ --image-column {image_column} \\
250
+ --batch-size {batch_size}
251
+ ```
252
+
253
+ ## Performance
254
+
255
+ - **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.2f} images/second
256
+ - **Benchmark Score**: 76.1% overall (across diverse document types)
257
+ - **Optimization**: Native resolution ViT + lightweight decoder
258
+
259
+ Generated with πŸ€– [UV Scripts](https://huggingface.co/uv-scripts)
260
+ """
261
+
262
+
263
+ def main(
264
+ input_dataset: str,
265
+ output_dataset: str,
266
+ image_column: str = "image",
267
+ batch_size: int = 16,
268
+ vocab_size: str = "151k",
269
+ max_model_len: int = 8192,
270
+ max_tokens: int = 6500,
271
+ temperature: float = 0.2,
272
+ top_p: float = 0.9,
273
+ gpu_memory_utilization: float = 0.8,
274
+ target_size: int = 1288,
275
+ no_resize: bool = False,
276
+ hf_token: str = None,
277
+ split: str = "train",
278
+ max_samples: int = None,
279
+ private: bool = False,
280
+ shuffle: bool = False,
281
+ seed: int = 42,
282
+ output_column: str = "markdown",
283
+ ):
284
+ """Process images from HF dataset through LightOnOCR model."""
285
+
286
+ # Check CUDA availability first
287
+ check_cuda_availability()
288
+
289
+ # Track processing start time
290
+ start_time = datetime.now()
291
+
292
+ # Enable HF_TRANSFER for faster downloads
293
+ os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
294
+
295
+ # Login to HF if token provided
296
+ HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
297
+ if HF_TOKEN:
298
+ login(token=HF_TOKEN)
299
+
300
+ # Get model ID from vocabulary size
301
+ if vocab_size not in MODEL_VARIANTS:
302
+ raise ValueError(
303
+ f"Invalid vocab_size '{vocab_size}'. Choose from: {list(MODEL_VARIANTS.keys())}"
304
+ )
305
+ model = MODEL_VARIANTS[vocab_size]
306
+ logger.info(f"Using model: {model} ({vocab_size} vocabulary)")
307
+
308
+ # Load dataset
309
+ logger.info(f"Loading dataset: {input_dataset}")
310
+ dataset = load_dataset(input_dataset, split=split)
311
+
312
+ # Validate image column
313
+ if image_column not in dataset.column_names:
314
+ raise ValueError(
315
+ f"Column '{image_column}' not found. Available: {dataset.column_names}"
316
+ )
317
+
318
+ # Shuffle if requested
319
+ if shuffle:
320
+ logger.info(f"Shuffling dataset with seed {seed}")
321
+ dataset = dataset.shuffle(seed=seed)
322
+
323
+ # Limit samples if requested
324
+ if max_samples:
325
+ dataset = dataset.select(range(min(max_samples, len(dataset))))
326
+ logger.info(f"Limited to {len(dataset)} samples")
327
+
328
+ # Initialize vLLM model
329
+ logger.info(f"Initializing vLLM with LightOnOCR")
330
+ logger.info("This may take a few minutes on first run...")
331
+ llm = LLM(
332
+ model=model,
333
+ trust_remote_code=True,
334
+ max_model_len=max_model_len,
335
+ gpu_memory_utilization=gpu_memory_utilization,
336
+ limit_mm_per_prompt={"image": 1}, # One image per prompt
337
+ enforce_eager=False, # Use torch.compile for better performance
338
+ )
339
+
340
+ # LightOnOCR recommended sampling parameters
341
+ sampling_params = SamplingParams(
342
+ temperature=temperature,
343
+ top_p=top_p,
344
+ max_tokens=max_tokens,
345
+ )
346
+
347
+ logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
348
+ logger.info(f"Output will be written to column: {output_column}")
349
+ if not no_resize:
350
+ logger.info(f"Images will be resized to {target_size}px (longest dimension)")
351
+
352
+ # Process images in batches
353
+ all_outputs = []
354
+
355
+ for batch_indices in tqdm(
356
+ partition_all(batch_size, range(len(dataset))),
357
+ total=(len(dataset) + batch_size - 1) // batch_size,
358
+ desc="LightOnOCR processing",
359
+ ):
360
+ batch_indices = list(batch_indices)
361
+ batch_images = [dataset[i][image_column] for i in batch_indices]
362
+
363
+ try:
364
+ # Create messages for batch
365
+ batch_messages = [
366
+ make_ocr_message(img, resize=not no_resize, target_size=target_size)
367
+ for img in batch_images
368
+ ]
369
+
370
+ # Process with vLLM
371
+ outputs = llm.chat(batch_messages, sampling_params)
372
+
373
+ # Extract outputs
374
+ for output in outputs:
375
+ text = output.outputs[0].text.strip()
376
+ all_outputs.append(text)
377
+
378
+ except Exception as e:
379
+ logger.error(f"Error processing batch: {e}")
380
+ # Add error placeholders for failed batch
381
+ all_outputs.extend(["[OCR ERROR]"] * len(batch_images))
382
+
383
+ # Calculate processing time
384
+ processing_duration = datetime.now() - start_time
385
+ processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min"
386
+
387
+ # Add output column to dataset
388
+ logger.info(f"Adding '{output_column}' column to dataset")
389
+ dataset = dataset.add_column(output_column, all_outputs)
390
+
391
+ # Handle inference_info tracking (for multi-model comparisons)
392
+ inference_entry = {
393
+ "model_id": model,
394
+ "model_name": "LightOnOCR",
395
+ "vocab_size": vocab_size,
396
+ "column_name": output_column,
397
+ "timestamp": datetime.now().isoformat(),
398
+ "temperature": temperature,
399
+ "top_p": top_p,
400
+ "max_tokens": max_tokens,
401
+ "target_size": target_size if not no_resize else "original",
402
+ }
403
+
404
+ if "inference_info" in dataset.column_names:
405
+ # Append to existing inference info
406
+ logger.info("Updating existing inference_info column")
407
+
408
+ def update_inference_info(example):
409
+ try:
410
+ existing_info = json.loads(example["inference_info"]) if example["inference_info"] else []
411
+ except (json.JSONDecodeError, TypeError):
412
+ existing_info = []
413
+
414
+ existing_info.append(inference_entry)
415
+ return {"inference_info": json.dumps(existing_info)}
416
+
417
+ dataset = dataset.map(update_inference_info)
418
+ else:
419
+ # Create new inference_info column
420
+ logger.info("Creating new inference_info column")
421
+ inference_list = [json.dumps([inference_entry])] * len(dataset)
422
+ dataset = dataset.add_column("inference_info", inference_list)
423
+
424
+ # Push to hub
425
+ logger.info(f"Pushing to {output_dataset}")
426
+ dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
427
+
428
+ # Create and push dataset card
429
+ logger.info("Creating dataset card")
430
+ card_content = create_dataset_card(
431
+ source_dataset=input_dataset,
432
+ model=model,
433
+ vocab_size=vocab_size,
434
+ num_samples=len(dataset),
435
+ processing_time=processing_time_str,
436
+ batch_size=batch_size,
437
+ max_model_len=max_model_len,
438
+ max_tokens=max_tokens,
439
+ gpu_memory_utilization=gpu_memory_utilization,
440
+ temperature=temperature,
441
+ top_p=top_p,
442
+ target_size=target_size,
443
+ image_column=image_column,
444
+ split=split,
445
+ )
446
+
447
+ card = DatasetCard(card_content)
448
+ card.push_to_hub(output_dataset, token=HF_TOKEN)
449
+
450
+ logger.info("βœ… LightOnOCR processing complete!")
451
+ logger.info(f"Dataset available at: https://huggingface.co/datasets/{output_dataset}")
452
+ logger.info(f"Processing time: {processing_time_str}")
453
+ logger.info(f"Processing speed: {len(dataset) / processing_duration.total_seconds():.2f} images/sec")
454
+
455
+
456
+ if __name__ == "__main__":
457
+ # Show example usage if no arguments
458
+ if len(sys.argv) == 1:
459
+ print("=" * 80)
460
+ print("LightOnOCR Document Processing")
461
+ print("=" * 80)
462
+ print("\nFast, compact 1B OCR model for production workloads")
463
+ print("\nFeatures:")
464
+ print("- ⚑ Fastest processing: 5.71 pages/sec on H100")
465
+ print("- 🎯 Compact: Only 1B parameters")
466
+ print("- 🌍 Multilingual with European language optimization")
467
+ print("- πŸ“ LaTeX formula recognition")
468
+ print("- πŸ“Š Table extraction (markdown format)")
469
+ print("- πŸ”€ 3 vocabulary sizes for speed/quality tradeoffs")
470
+ print("\nExample usage:")
471
+ print("\n1. Basic OCR (full vocabulary):")
472
+ print(" uv run lighton-ocr.py input-dataset output-dataset")
473
+ print("\n2. European languages optimized (faster):")
474
+ print(" uv run lighton-ocr.py docs results --vocab-size 32k")
475
+ print("\n3. Custom batch size for performance:")
476
+ print(" uv run lighton-ocr.py docs results --batch-size 32")
477
+ print("\n4. Test with small sample:")
478
+ print(" uv run lighton-ocr.py large-dataset test --max-samples 50 --shuffle")
479
+ print("\n5. Original image size (no resize):")
480
+ print(" uv run lighton-ocr.py docs output --no-resize")
481
+ print("\n6. Running on HF Jobs:")
482
+ print(" hf jobs uv run --flavor l4x1 \\")
483
+ print(" -e HF_TOKEN=$(python3 -c \"from huggingface_hub import get_token; print(get_token())\") \\")
484
+ print(" -e HF_HUB_ENABLE_HF_TRANSFER=1 \\")
485
+ print(" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \\")
486
+ print(" input-dataset output-dataset --vocab-size 32k")
487
+ print("\n" + "=" * 80)
488
+ print("\nVocabulary Size Options:")
489
+ print(" 151k - Full vocabulary (all languages)")
490
+ print(" 32k - European languages (~12% faster)")
491
+ print(" 16k - European languages (~12% faster)")
492
+ print("\nFor full help, run: uv run lighton-ocr.py --help")
493
+ sys.exit(0)
494
+
495
+ parser = argparse.ArgumentParser(
496
+ description="Document OCR using LightOnOCR (fast 1B model)",
497
+ formatter_class=argparse.RawDescriptionHelpFormatter,
498
+ epilog="""
499
+ Vocabulary Size Options:
500
+ 151k Full vocabulary supporting all languages (default)
501
+ 32k European languages optimized (~12% faster decoding)
502
+ 16k European languages optimized (~12% faster decoding)
503
+
504
+ Examples:
505
+ # Basic text OCR with full vocabulary
506
+ uv run lighton-ocr.py my-docs analyzed-docs
507
+
508
+ # Fast processing for European languages
509
+ uv run lighton-ocr.py papers results --vocab-size 32k
510
+
511
+ # Test with random sampling
512
+ uv run lighton-ocr.py large-dataset test --max-samples 50 --shuffle
513
+
514
+ # Custom batch size for GPU optimization
515
+ uv run lighton-ocr.py dataset output --batch-size 32 --gpu-memory-utilization 0.9
516
+ """,
517
+ )
518
+
519
+ parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
520
+ parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
521
+ parser.add_argument(
522
+ "--image-column",
523
+ default="image",
524
+ help="Column containing images (default: image)",
525
+ )
526
+ parser.add_argument(
527
+ "--batch-size",
528
+ type=int,
529
+ default=16,
530
+ help="Batch size for processing (default: 16)",
531
+ )
532
+ parser.add_argument(
533
+ "--vocab-size",
534
+ default="151k",
535
+ choices=list(MODEL_VARIANTS.keys()),
536
+ help="Vocabulary size variant (default: 151k)",
537
+ )
538
+ parser.add_argument(
539
+ "--max-model-len",
540
+ type=int,
541
+ default=8192,
542
+ help="Maximum model context length (default: 8192)",
543
+ )
544
+ parser.add_argument(
545
+ "--max-tokens",
546
+ type=int,
547
+ default=6500,
548
+ help="Maximum tokens to generate (default: 6500)",
549
+ )
550
+ parser.add_argument(
551
+ "--temperature",
552
+ type=float,
553
+ default=0.2,
554
+ help="Sampling temperature (default: 0.2)",
555
+ )
556
+ parser.add_argument(
557
+ "--top-p",
558
+ type=float,
559
+ default=0.9,
560
+ help="Top-p sampling parameter (default: 0.9)",
561
+ )
562
+ parser.add_argument(
563
+ "--gpu-memory-utilization",
564
+ type=float,
565
+ default=0.8,
566
+ help="GPU memory utilization (default: 0.8)",
567
+ )
568
+ parser.add_argument(
569
+ "--target-size",
570
+ type=int,
571
+ default=1288,
572
+ help="Target size for longest image dimension in pixels (default: 1288)",
573
+ )
574
+ parser.add_argument(
575
+ "--no-resize",
576
+ action="store_true",
577
+ help="Don't resize images (use original size)",
578
+ )
579
+ parser.add_argument("--hf-token", help="Hugging Face API token")
580
+ parser.add_argument(
581
+ "--split", default="train", help="Dataset split to use (default: train)"
582
+ )
583
+ parser.add_argument(
584
+ "--max-samples",
585
+ type=int,
586
+ help="Maximum number of samples to process (for testing)",
587
+ )
588
+ parser.add_argument(
589
+ "--private", action="store_true", help="Make output dataset private"
590
+ )
591
+ parser.add_argument(
592
+ "--shuffle", action="store_true", help="Shuffle dataset before processing"
593
+ )
594
+ parser.add_argument(
595
+ "--seed",
596
+ type=int,
597
+ default=42,
598
+ help="Random seed for shuffling (default: 42)",
599
+ )
600
+ parser.add_argument(
601
+ "--output-column",
602
+ default="markdown",
603
+ help="Column name for output text (default: markdown)",
604
+ )
605
+
606
+ args = parser.parse_args()
607
+
608
+ main(
609
+ input_dataset=args.input_dataset,
610
+ output_dataset=args.output_dataset,
611
+ image_column=args.image_column,
612
+ batch_size=args.batch_size,
613
+ vocab_size=args.vocab_size,
614
+ max_model_len=args.max_model_len,
615
+ max_tokens=args.max_tokens,
616
+ temperature=args.temperature,
617
+ top_p=args.top_p,
618
+ gpu_memory_utilization=args.gpu_memory_utilization,
619
+ target_size=args.target_size,
620
+ no_resize=args.no_resize,
621
+ hf_token=args.hf_token,
622
+ split=args.split,
623
+ max_samples=args.max_samples,
624
+ private=args.private,
625
+ shuffle=args.shuffle,
626
+ seed=args.seed,
627
+ output_column=args.output_column,
628
+ )