davanstrien HF Staff Claude commited on
Commit
3073a00
·
1 Parent(s): 88db448

Add prompt mode presets and remove test script

Browse files

Changes:
- Added PROMPT_MODES dict with 5 presets: document, image, free, figure, describe
- Added --prompt-mode argument (default: document)
- Custom --prompt still supported (overrides prompt-mode)
- Updated help text and examples to show prompt modes
- Removed deepseek-ocr-vllm-test.py (no longer needed after successful testing)

Prompt modes from DeepSeek-OCR GitHub:
- document: Convert document to markdown with grounding (default)
- image: OCR any image with grounding
- free: Free OCR without layout preservation
- figure: Parse figures from documents
- describe: Generate detailed image descriptions

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

DeepSeek-OCR ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 8cf003d38821fa1b19c73da3bd1b0dc262ea8136
__pycache__/dots-ocr.cpython-313.pyc DELETED
Binary file (22.6 kB)
 
__pycache__/numarkdown-ocr.cpython-313.pyc ADDED
Binary file (26.8 kB). View file
 
bigger-font.gif ADDED

Git LFS Details

  • SHA256: 8f12c4b6dfcd1b5a2f99afc0f389684bf46cda3d3d29e50ca47c3c4849fec408
  • Pointer size: 133 Bytes
  • Size of remote file: 31.1 MB
deepseek-ocr-vllm.py CHANGED
@@ -70,6 +70,15 @@ RESOLUTION_MODES = {
70
  }, # Dynamic resolution
71
  }
72
 
 
 
 
 
 
 
 
 
 
73
 
74
  def check_cuda_availability():
75
  """Check if CUDA is available and exit if not."""
@@ -250,7 +259,8 @@ def main(
250
  max_model_len: int = 8192,
251
  max_tokens: int = 8192,
252
  gpu_memory_utilization: float = 0.8,
253
- prompt: str = "<image>\n<|grounding|>Convert the document to markdown.",
 
254
  hf_token: str = None,
255
  split: str = "train",
256
  max_samples: int = None,
@@ -305,6 +315,21 @@ def main(
305
  f"image_size={final_image_size}, crop_mode={final_crop_mode}"
306
  )
307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308
  # Load dataset
309
  logger.info(f"Loading dataset: {input_dataset}")
310
  dataset = load_dataset(input_dataset, split=split)
@@ -362,7 +387,7 @@ def main(
362
 
363
  try:
364
  # Create messages for batch
365
- batch_messages = [make_ocr_message(img, prompt) for img in batch_images]
366
 
367
  # Process with vLLM
368
  outputs = llm.chat(batch_messages, sampling_params)
@@ -411,7 +436,8 @@ def main(
411
  "base_size": final_base_size,
412
  "image_size": final_image_size,
413
  "crop_mode": final_crop_mode,
414
- "prompt": prompt,
 
415
  "batch_size": batch_size,
416
  "max_tokens": max_tokens,
417
  "gpu_memory_utilization": gpu_memory_utilization,
@@ -486,14 +512,18 @@ if __name__ == "__main__":
486
  )
487
  print("\n3. Fast processing (Tiny - 512×512):")
488
  print(" uv run deepseek-ocr-vllm.py quick-test output --resolution-mode tiny")
489
- print("\n4. Process a subset for testing:")
 
 
 
 
490
  print(
491
  " uv run deepseek-ocr-vllm.py large-dataset test-output --max-samples 10"
492
  )
493
- print("\n5. Custom resolution:")
494
  print(" uv run deepseek-ocr-vllm.py dataset output \\")
495
  print(" --base-size 1024 --image-size 640 --crop-mode")
496
- print("\n6. Running on HF Jobs:")
497
  print(" hf jobs uv run --flavor l4x1 \\")
498
  print(" -s HF_TOKEN \\")
499
  print(" -e UV_TORCH_BACKEND=auto \\")
@@ -517,6 +547,13 @@ Resolution Modes:
517
  large 1280×1280 pixels, maximum quality (400 vision tokens)
518
  gundam Dynamic multi-tile processing (adaptive)
519
 
 
 
 
 
 
 
 
520
  Examples:
521
  # Basic usage with default Gundam mode
522
  uv run deepseek-ocr-vllm.py my-images-dataset ocr-results
@@ -527,6 +564,15 @@ Examples:
527
  # Fast processing for testing
528
  uv run deepseek-ocr-vllm.py dataset output --resolution-mode tiny --max-samples 100
529
 
 
 
 
 
 
 
 
 
 
530
  # Custom resolution settings
531
  uv run deepseek-ocr-vllm.py dataset output --base-size 1024 --image-size 640 --crop-mode
532
 
@@ -592,10 +638,15 @@ Examples:
592
  default=0.8,
593
  help="GPU memory utilization (default: 0.8)",
594
  )
 
 
 
 
 
 
595
  parser.add_argument(
596
  "--prompt",
597
- default="<image>\n<|grounding|>Convert the document to markdown.",
598
- help="Prompt for OCR (default: grounding markdown conversion)",
599
  )
600
  parser.add_argument("--hf-token", help="Hugging Face API token")
601
  parser.add_argument(
@@ -636,6 +687,7 @@ Examples:
636
  max_model_len=args.max_model_len,
637
  max_tokens=args.max_tokens,
638
  gpu_memory_utilization=args.gpu_memory_utilization,
 
639
  prompt=args.prompt,
640
  hf_token=args.hf_token,
641
  split=args.split,
 
70
  }, # Dynamic resolution
71
  }
72
 
73
+ # Prompt mode presets (from DeepSeek-OCR GitHub)
74
+ PROMPT_MODES = {
75
+ "document": "<image>\n<|grounding|>Convert the document to markdown.",
76
+ "image": "<image>\n<|grounding|>OCR this image.",
77
+ "free": "<image>\nFree OCR.",
78
+ "figure": "<image>\nParse the figure.",
79
+ "describe": "<image>\nDescribe this image in detail.",
80
+ }
81
+
82
 
83
  def check_cuda_availability():
84
  """Check if CUDA is available and exit if not."""
 
259
  max_model_len: int = 8192,
260
  max_tokens: int = 8192,
261
  gpu_memory_utilization: float = 0.8,
262
+ prompt_mode: str = "document",
263
+ prompt: str = None,
264
  hf_token: str = None,
265
  split: str = "train",
266
  max_samples: int = None,
 
315
  f"image_size={final_image_size}, crop_mode={final_crop_mode}"
316
  )
317
 
318
+ # Determine prompt
319
+ if prompt is not None:
320
+ final_prompt = prompt
321
+ logger.info(f"Using custom prompt")
322
+ elif prompt_mode in PROMPT_MODES:
323
+ final_prompt = PROMPT_MODES[prompt_mode]
324
+ logger.info(f"Using prompt mode: {prompt_mode}")
325
+ else:
326
+ raise ValueError(
327
+ f"Invalid prompt mode '{prompt_mode}'. "
328
+ f"Use one of {list(PROMPT_MODES.keys())} or specify --prompt"
329
+ )
330
+
331
+ logger.info(f"Prompt: {final_prompt}")
332
+
333
  # Load dataset
334
  logger.info(f"Loading dataset: {input_dataset}")
335
  dataset = load_dataset(input_dataset, split=split)
 
387
 
388
  try:
389
  # Create messages for batch
390
+ batch_messages = [make_ocr_message(img, final_prompt) for img in batch_images]
391
 
392
  # Process with vLLM
393
  outputs = llm.chat(batch_messages, sampling_params)
 
436
  "base_size": final_base_size,
437
  "image_size": final_image_size,
438
  "crop_mode": final_crop_mode,
439
+ "prompt": final_prompt,
440
+ "prompt_mode": prompt_mode if prompt is None else "custom",
441
  "batch_size": batch_size,
442
  "max_tokens": max_tokens,
443
  "gpu_memory_utilization": gpu_memory_utilization,
 
512
  )
513
  print("\n3. Fast processing (Tiny - 512×512):")
514
  print(" uv run deepseek-ocr-vllm.py quick-test output --resolution-mode tiny")
515
+ print("\n4. Parse figures from documents:")
516
+ print(" uv run deepseek-ocr-vllm.py scientific-papers figures --prompt-mode figure")
517
+ print("\n5. Free OCR without layout:")
518
+ print(" uv run deepseek-ocr-vllm.py images text --prompt-mode free")
519
+ print("\n6. Process a subset for testing:")
520
  print(
521
  " uv run deepseek-ocr-vllm.py large-dataset test-output --max-samples 10"
522
  )
523
+ print("\n7. Custom resolution:")
524
  print(" uv run deepseek-ocr-vllm.py dataset output \\")
525
  print(" --base-size 1024 --image-size 640 --crop-mode")
526
+ print("\n8. Running on HF Jobs:")
527
  print(" hf jobs uv run --flavor l4x1 \\")
528
  print(" -s HF_TOKEN \\")
529
  print(" -e UV_TORCH_BACKEND=auto \\")
 
547
  large 1280×1280 pixels, maximum quality (400 vision tokens)
548
  gundam Dynamic multi-tile processing (adaptive)
549
 
550
+ Prompt Modes:
551
+ document Convert document to markdown with grounding (default)
552
+ image OCR any image with grounding
553
+ free Free OCR without layout preservation
554
+ figure Parse figures from documents
555
+ describe Generate detailed image descriptions
556
+
557
  Examples:
558
  # Basic usage with default Gundam mode
559
  uv run deepseek-ocr-vllm.py my-images-dataset ocr-results
 
564
  # Fast processing for testing
565
  uv run deepseek-ocr-vllm.py dataset output --resolution-mode tiny --max-samples 100
566
 
567
+ # Parse figures from a document dataset
568
+ uv run deepseek-ocr-vllm.py scientific-papers figures --prompt-mode figure
569
+
570
+ # Free OCR without layout (fastest)
571
+ uv run deepseek-ocr-vllm.py images text --prompt-mode free
572
+
573
+ # Custom prompt for specific task
574
+ uv run deepseek-ocr-vllm.py dataset output --prompt "<image>\nExtract all table data."
575
+
576
  # Custom resolution settings
577
  uv run deepseek-ocr-vllm.py dataset output --base-size 1024 --image-size 640 --crop-mode
578
 
 
638
  default=0.8,
639
  help="GPU memory utilization (default: 0.8)",
640
  )
641
+ parser.add_argument(
642
+ "--prompt-mode",
643
+ default="document",
644
+ choices=list(PROMPT_MODES.keys()),
645
+ help="Prompt mode preset (default: document). Use --prompt for custom prompts.",
646
+ )
647
  parser.add_argument(
648
  "--prompt",
649
+ help="Custom OCR prompt (overrides --prompt-mode)",
 
650
  )
651
  parser.add_argument("--hf-token", help="Hugging Face API token")
652
  parser.add_argument(
 
687
  max_model_len=args.max_model_len,
688
  max_tokens=args.max_tokens,
689
  gpu_memory_utilization=args.gpu_memory_utilization,
690
+ prompt_mode=args.prompt_mode,
691
  prompt=args.prompt,
692
  hf_token=args.hf_token,
693
  split=args.split,
demo.cast ADDED
The diff for this file is too large to render. See raw diff
 
first.gif ADDED

Git LFS Details

  • SHA256: c081498fa28d5b06ea93a14316df665e069e14756231b9acdde8df04755ac3c5
  • Pointer size: 133 Bytes
  • Size of remote file: 15.3 MB
numarkdown-ocr.py CHANGED
@@ -25,6 +25,8 @@ Features:
25
  - Mathematical formula recognition
26
  - Clean markdown output generation
27
  - Optional thinking trace inclusion
 
 
28
  """
29
 
30
  import argparse
@@ -39,6 +41,7 @@ from typing import Any, Dict, List, Union, Optional, Tuple
39
  from datetime import datetime
40
 
41
  import torch
 
42
  from datasets import load_dataset
43
  from huggingface_hub import DatasetCard, HfApi, login
44
  from PIL import Image
@@ -50,14 +53,20 @@ logging.basicConfig(level=logging.INFO)
50
  logger = logging.getLogger(__name__)
51
 
52
 
53
- def check_cuda_availability():
54
- """Check if CUDA is available and exit if not."""
55
- if not torch.cuda.is_available():
56
  logger.error("CUDA is not available. This script requires a GPU.")
57
- logger.error("Please run on a machine with a CUDA-capable GPU.")
58
  sys.exit(1)
59
- else:
60
- logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
 
 
 
 
 
 
61
 
62
 
63
  def validate_and_resize_image(
@@ -167,6 +176,7 @@ def create_dataset_card(
167
  max_tokens: int,
168
  gpu_memory_utilization: float,
169
  include_thinking: bool,
 
170
  image_column: str = "image",
171
  split: str = "train",
172
  ) -> str:
@@ -206,6 +216,7 @@ This dataset contains markdown-formatted OCR results from images in [{source_dat
206
  - **Max Model Length**: {max_model_len:,} tokens
207
  - **Max Output Tokens**: {max_tokens:,}
208
  - **GPU Memory Utilization**: {gpu_memory_utilization:.1%}
 
209
  - **Thinking Traces**: {"Included" if include_thinking else "Excluded (only final answers)"}
210
 
211
  ## Model Information
@@ -271,7 +282,7 @@ uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py
271
  ## Performance
272
 
273
  - **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second
274
- - **GPU Configuration**: vLLM with {gpu_memory_utilization:.0%} GPU memory utilization
275
  - **Model Size**: 8.29B parameters
276
 
277
  Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts)
@@ -285,8 +296,9 @@ def main(
285
  batch_size: int = 16,
286
  model: str = "numind/NuMarkdown-8B-Thinking",
287
  max_model_len: int = 16384,
288
- max_tokens: int = 8192,
289
  gpu_memory_utilization: float = 0.9,
 
290
  hf_token: str = None,
291
  split: str = "train",
292
  max_samples: int = None,
@@ -297,10 +309,27 @@ def main(
297
  temperature: float = 0.0,
298
  custom_prompt: Optional[str] = None,
299
  ):
300
- """Process images from HF dataset through NuMarkdown model."""
301
 
302
- # Check CUDA availability first
303
- check_cuda_availability()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304
 
305
  # Track processing start time
306
  start_time = datetime.now()
@@ -335,11 +364,13 @@ def main(
335
 
336
  # Initialize vLLM with trust_remote_code for NuMarkdown
337
  logger.info(f"Initializing vLLM with model: {model}")
 
338
  llm = LLM(
339
  model=model,
340
  trust_remote_code=True, # Required for NuMarkdown
341
  max_model_len=max_model_len,
342
  gpu_memory_utilization=gpu_memory_utilization,
 
343
  limit_mm_per_prompt={"image": 1},
344
  )
345
 
@@ -452,6 +483,7 @@ def main(
452
  max_tokens=max_tokens,
453
  gpu_memory_utilization=gpu_memory_utilization,
454
  include_thinking=include_thinking,
 
455
  image_column=image_column,
456
  split=split,
457
  )
@@ -502,15 +534,17 @@ if __name__ == "__main__":
502
  print("\n3. With custom settings:")
503
  print(" uv run numarkdown-ocr.py scientific-papers extracted-text \\")
504
  print(" --batch-size 8 \\")
505
- print(" --max-tokens 8192 \\")
506
  print(" --gpu-memory-utilization 0.9")
507
  print("\n4. Process a subset for testing:")
508
  print(" uv run numarkdown-ocr.py large-dataset test-output --max-samples 10")
509
  print("\n5. Custom prompt for specific needs:")
510
  print(" uv run numarkdown-ocr.py invoices invoice-data \\")
511
  print(' --custom-prompt "Extract all invoice details including line items"')
512
- print("\n6. Running on HF Jobs:")
513
- print(" hf jobs uv run --flavor l4x1 \\")
 
 
514
  print(' -e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\')
515
  print(" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \\")
516
  print(" your-document-dataset \\")
@@ -536,6 +570,9 @@ Examples:
536
  # Custom prompt for specific extraction
537
  uv run numarkdown-ocr.py forms form-data --custom-prompt "Extract all form fields and values"
538
 
 
 
 
539
  # Random sample from dataset
540
  uv run numarkdown-ocr.py ordered-dataset random-sample --max-samples 50 --shuffle
541
  """,
@@ -568,14 +605,19 @@ Examples:
568
  parser.add_argument(
569
  "--max-tokens",
570
  type=int,
571
- default=8192,
572
- help="Maximum tokens to generate (default: 8192)",
573
  )
574
  parser.add_argument(
575
  "--gpu-memory-utilization",
576
  type=float,
577
  default=0.9,
578
- help="GPU memory utilization (default: 0.9)",
 
 
 
 
 
579
  )
580
  parser.add_argument("--hf-token", help="Hugging Face API token")
581
  parser.add_argument(
@@ -628,6 +670,7 @@ Examples:
628
  max_model_len=args.max_model_len,
629
  max_tokens=args.max_tokens,
630
  gpu_memory_utilization=args.gpu_memory_utilization,
 
631
  hf_token=args.hf_token,
632
  split=args.split,
633
  max_samples=args.max_samples,
 
25
  - Mathematical formula recognition
26
  - Clean markdown output generation
27
  - Optional thinking trace inclusion
28
+ - Multi-GPU support with automatic detection
29
+ - Optimized token budget for reasoning models
30
  """
31
 
32
  import argparse
 
41
  from datetime import datetime
42
 
43
  import torch
44
+ from torch import cuda
45
  from datasets import load_dataset
46
  from huggingface_hub import DatasetCard, HfApi, login
47
  from PIL import Image
 
53
  logger = logging.getLogger(__name__)
54
 
55
 
56
+ def check_gpu_availability() -> int:
57
+ """Check if CUDA is available and return the number of GPUs."""
58
+ if not cuda.is_available():
59
  logger.error("CUDA is not available. This script requires a GPU.")
60
+ logger.error("Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor.")
61
  sys.exit(1)
62
+
63
+ num_gpus = cuda.device_count()
64
+ for i in range(num_gpus):
65
+ gpu_name = cuda.get_device_name(i)
66
+ gpu_memory = cuda.get_device_properties(i).total_memory / 1024**3
67
+ logger.info(f"GPU {i}: {gpu_name} with {gpu_memory:.1f} GB memory")
68
+
69
+ return num_gpus
70
 
71
 
72
  def validate_and_resize_image(
 
176
  max_tokens: int,
177
  gpu_memory_utilization: float,
178
  include_thinking: bool,
179
+ tensor_parallel_size: int,
180
  image_column: str = "image",
181
  split: str = "train",
182
  ) -> str:
 
216
  - **Max Model Length**: {max_model_len:,} tokens
217
  - **Max Output Tokens**: {max_tokens:,}
218
  - **GPU Memory Utilization**: {gpu_memory_utilization:.1%}
219
+ - **Tensor Parallel Size**: {tensor_parallel_size} GPU(s)
220
  - **Thinking Traces**: {"Included" if include_thinking else "Excluded (only final answers)"}
221
 
222
  ## Model Information
 
282
  ## Performance
283
 
284
  - **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second
285
+ - **GPU Configuration**: {tensor_parallel_size} GPU(s) with {gpu_memory_utilization:.0%} memory utilization
286
  - **Model Size**: 8.29B parameters
287
 
288
  Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts)
 
296
  batch_size: int = 16,
297
  model: str = "numind/NuMarkdown-8B-Thinking",
298
  max_model_len: int = 16384,
299
+ max_tokens: int = 16384,
300
  gpu_memory_utilization: float = 0.9,
301
+ tensor_parallel_size: Optional[int] = None,
302
  hf_token: str = None,
303
  split: str = "train",
304
  max_samples: int = None,
 
309
  temperature: float = 0.0,
310
  custom_prompt: Optional[str] = None,
311
  ):
312
+ """Process images from HF dataset through NuMarkdown model.
313
 
314
+ The max_tokens parameter controls the total token budget for both
315
+ thinking and answer phases. For complex documents with extensive
316
+ reasoning, the default of 16384 tokens provides ample room for both
317
+ the thinking process and the final markdown output.
318
+ """
319
+
320
+ # GPU check and configuration
321
+ num_gpus = check_gpu_availability()
322
+ if tensor_parallel_size is None:
323
+ tensor_parallel_size = num_gpus
324
+ logger.info(
325
+ f"Auto-detected {num_gpus} GPU(s), using tensor_parallel_size={tensor_parallel_size}"
326
+ )
327
+ else:
328
+ logger.info(f"Using specified tensor_parallel_size={tensor_parallel_size}")
329
+ if tensor_parallel_size > num_gpus:
330
+ logger.warning(
331
+ f"Requested {tensor_parallel_size} GPUs but only {num_gpus} available"
332
+ )
333
 
334
  # Track processing start time
335
  start_time = datetime.now()
 
364
 
365
  # Initialize vLLM with trust_remote_code for NuMarkdown
366
  logger.info(f"Initializing vLLM with model: {model}")
367
+ logger.info(f"Using {tensor_parallel_size} GPU(s) for inference")
368
  llm = LLM(
369
  model=model,
370
  trust_remote_code=True, # Required for NuMarkdown
371
  max_model_len=max_model_len,
372
  gpu_memory_utilization=gpu_memory_utilization,
373
+ tensor_parallel_size=tensor_parallel_size,
374
  limit_mm_per_prompt={"image": 1},
375
  )
376
 
 
483
  max_tokens=max_tokens,
484
  gpu_memory_utilization=gpu_memory_utilization,
485
  include_thinking=include_thinking,
486
+ tensor_parallel_size=tensor_parallel_size,
487
  image_column=image_column,
488
  split=split,
489
  )
 
534
  print("\n3. With custom settings:")
535
  print(" uv run numarkdown-ocr.py scientific-papers extracted-text \\")
536
  print(" --batch-size 8 \\")
537
+ print(" --max-tokens 16384 \\")
538
  print(" --gpu-memory-utilization 0.9")
539
  print("\n4. Process a subset for testing:")
540
  print(" uv run numarkdown-ocr.py large-dataset test-output --max-samples 10")
541
  print("\n5. Custom prompt for specific needs:")
542
  print(" uv run numarkdown-ocr.py invoices invoice-data \\")
543
  print(' --custom-prompt "Extract all invoice details including line items"')
544
+ print("\n6. Multi-GPU processing:")
545
+ print(" uv run numarkdown-ocr.py large-docs processed-docs --tensor-parallel-size 2")
546
+ print("\n7. Running on HF Jobs:")
547
+ print(" hf jobs uv run --flavor a100x2 \\")
548
  print(' -e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\')
549
  print(" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \\")
550
  print(" your-document-dataset \\")
 
570
  # Custom prompt for specific extraction
571
  uv run numarkdown-ocr.py forms form-data --custom-prompt "Extract all form fields and values"
572
 
573
+ # Multi-GPU for large datasets
574
+ uv run numarkdown-ocr.py large-dataset processed --tensor-parallel-size 4
575
+
576
  # Random sample from dataset
577
  uv run numarkdown-ocr.py ordered-dataset random-sample --max-samples 50 --shuffle
578
  """,
 
605
  parser.add_argument(
606
  "--max-tokens",
607
  type=int,
608
+ default=16384,
609
+ help="Maximum tokens to generate including thinking tokens (default: 16384)",
610
  )
611
  parser.add_argument(
612
  "--gpu-memory-utilization",
613
  type=float,
614
  default=0.9,
615
+ help="GPU memory utilization per GPU (default: 0.9)",
616
+ )
617
+ parser.add_argument(
618
+ "--tensor-parallel-size",
619
+ type=int,
620
+ help="Number of GPUs to use (default: auto-detect all available)",
621
  )
622
  parser.add_argument("--hf-token", help="Hugging Face API token")
623
  parser.add_argument(
 
670
  max_model_len=args.max_model_len,
671
  max_tokens=args.max_tokens,
672
  gpu_memory_utilization=args.gpu_memory_utilization,
673
+ tensor_parallel_size=args.tensor_parallel_size,
674
  hf_token=args.hf_token,
675
  split=args.split,
676
  max_samples=args.max_samples,
smoldocling-ocr.py ADDED
@@ -0,0 +1,580 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.11"
3
+ # dependencies = [
4
+ # "datasets",
5
+ # "huggingface-hub[hf_transfer]",
6
+ # "pillow",
7
+ # "vllm",
8
+ # "tqdm",
9
+ # "toolz",
10
+ # "torch", # Added for CUDA check
11
+ # "docling-core", # For DocTags conversion
12
+ # ]
13
+ #
14
+ # ///
15
+
16
+ """
17
+ Extract structured documents using SmolDocling-256M with vLLM.
18
+
19
+ This script processes images through the SmolDocling model to extract
20
+ structured document content with DocTags format, ideal for documents
21
+ with code, formulas, tables, and complex layouts.
22
+
23
+ Features:
24
+ - Ultra-compact 256M parameter model
25
+ - DocTags format for efficient representation
26
+ - Code block recognition with indentation
27
+ - Mathematical formula detection
28
+ - Table and chart extraction
29
+ - Layout preservation with bounding boxes
30
+ """
31
+
32
+ import argparse
33
+ import base64
34
+ import io
35
+ import json
36
+ import logging
37
+ import os
38
+ import re
39
+ import sys
40
+ from typing import Any, Dict, List, Union
41
+ from datetime import datetime
42
+
43
+ import torch
44
+ from datasets import load_dataset
45
+ from docling_core.types.doc import DoclingDocument
46
+ from docling_core.types.doc.document import DocTagsDocument
47
+ from huggingface_hub import DatasetCard, login
48
+ from PIL import Image
49
+ from toolz import partition_all
50
+ from tqdm.auto import tqdm
51
+ from vllm import LLM, SamplingParams
52
+
53
+ logging.basicConfig(level=logging.INFO)
54
+ logger = logging.getLogger(__name__)
55
+
56
+
57
+ def check_cuda_availability():
58
+ """Check if CUDA is available and exit if not."""
59
+ if not torch.cuda.is_available():
60
+ logger.error("CUDA is not available. This script requires a GPU.")
61
+ logger.error("Please run on a machine with a CUDA-capable GPU.")
62
+ sys.exit(1)
63
+ else:
64
+ logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
65
+
66
+
67
+ def prepare_llm_input(
68
+ image: Union[Image.Image, Dict[str, Any], str],
69
+ prompt_text: str = "Convert page to Docling.",
70
+ ) -> Dict:
71
+ """Prepare input for vLLM processing."""
72
+ # Convert to PIL Image if needed
73
+ if isinstance(image, Image.Image):
74
+ pil_img = image.convert("RGB")
75
+ elif isinstance(image, dict) and "bytes" in image:
76
+ pil_img = Image.open(io.BytesIO(image["bytes"])).convert("RGB")
77
+ elif isinstance(image, str):
78
+ pil_img = Image.open(image).convert("RGB")
79
+ else:
80
+ raise ValueError(f"Unsupported image type: {type(image)}")
81
+
82
+ # Create chat template - exact format from the example
83
+ chat_template = (
84
+ f"<|im_start|>User:<image>{prompt_text}<end_of_utterance>\nAssistant:"
85
+ )
86
+
87
+ # Return in the format expected by vLLM generate
88
+ return {"prompt": chat_template, "multi_modal_data": {"image": pil_img}}
89
+
90
+
91
+ def convert_doctags_to_markdown(doctags_output: str) -> str:
92
+ """Convert DocTags output to markdown format."""
93
+ # For now, just return the raw output as-is
94
+ # We'll focus on getting the basic vLLM inference working first
95
+ return doctags_output.strip()
96
+
97
+
98
+ def create_dataset_card(
99
+ source_dataset: str,
100
+ model: str,
101
+ num_samples: int,
102
+ processing_time: str,
103
+ output_column: str,
104
+ output_format: str,
105
+ batch_size: int,
106
+ max_model_len: int,
107
+ max_tokens: int,
108
+ gpu_memory_utilization: float,
109
+ image_column: str = "image",
110
+ split: str = "train",
111
+ ) -> str:
112
+ """Create a dataset card documenting the OCR process."""
113
+ model_name = model.split("/")[-1]
114
+
115
+ return f"""---
116
+ tags:
117
+ - ocr
118
+ - document-processing
119
+ - smoldocling
120
+ - doctags
121
+ - structured-extraction
122
+ - uv-script
123
+ - generated
124
+ ---
125
+
126
+ # Document Processing using {model_name}
127
+
128
+ This dataset contains structured document extraction from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using SmolDocling.
129
+
130
+ ## Processing Details
131
+
132
+ - **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
133
+ - **Model**: [{model}](https://huggingface.co/{model})
134
+ - **Number of Samples**: {num_samples:,}
135
+ - **Processing Time**: {processing_time}
136
+ - **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}
137
+
138
+ ### Configuration
139
+
140
+ - **Image Column**: `{image_column}`
141
+ - **Output Column**: `{output_column}`
142
+ - **Output Format**: {output_format}
143
+ - **Dataset Split**: `{split}`
144
+ - **Batch Size**: {batch_size}
145
+ - **Max Model Length**: {max_model_len:,} tokens
146
+ - **Max Output Tokens**: {max_tokens:,}
147
+ - **GPU Memory Utilization**: {gpu_memory_utilization:.1%}
148
+
149
+ ## Model Information
150
+
151
+ SmolDocling-256M is an ultra-compact multimodal model that excels at:
152
+ - 💻 **Code Recognition** - Detects and formats code blocks with proper indentation
153
+ - 🔢 **Formula Recognition** - Identifies and processes mathematical expressions
154
+ - 📊 **Tables & Charts** - Extracts structured data from tables and charts
155
+ - 📐 **Layout Preservation** - Maintains document structure with bounding boxes
156
+ - 🏷️ **DocTags Format** - Efficient minimal representation for documents
157
+ - ⚡ **Fast Inference** - Only 256M parameters for quick processing
158
+
159
+ ## Dataset Structure
160
+
161
+ The dataset contains all original columns plus:
162
+ - `{output_column}`: The extracted {"DocTags JSON" if output_format == "doctags" else "markdown"} from each image
163
+ - `inference_info`: JSON list tracking all OCR models applied to this dataset
164
+
165
+ ## Usage
166
+
167
+ ```python
168
+ from datasets import load_dataset
169
+ import json
170
+ {"from docling_core.types.doc import DoclingDocument" if output_format == "doctags" else ""}
171
+ {"from docling_core.types.doc.document import DocTagsDocument" if output_format == "doctags" else ""}
172
+
173
+ # Load the dataset
174
+ dataset = load_dataset("{{output_dataset_id}}", split="{split}")
175
+
176
+ # Access the extracted content
177
+ for example in dataset:
178
+ {"# Parse DocTags and convert to desired format" if output_format == "doctags" else ""}
179
+ {f"doc_tags = DocTagsDocument.model_validate_json(example['{output_column}'])" if output_format == "doctags" else f"print(example['{output_column}'])"}
180
+ {"doc = DoclingDocument.from_doctags(doc_tags)" if output_format == "doctags" else ""}
181
+ {"print(doc.export(format='md').text) # Or 'html', 'json'" if output_format == "doctags" else ""}
182
+ break
183
+
184
+ # View all OCR models applied to this dataset
185
+ inference_info = json.loads(dataset[0]["inference_info"])
186
+ for info in inference_info:
187
+ print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}")
188
+ ```
189
+
190
+ ## Reproduction
191
+
192
+ This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) SmolDocling script:
193
+
194
+ ```bash
195
+ uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/smoldocling-ocr.py \\
196
+ {source_dataset} \\
197
+ <output-dataset> \\
198
+ --image-column {image_column} \\
199
+ --output-format {output_format} \\
200
+ --batch-size {batch_size} \\
201
+ --max-model-len {max_model_len} \\
202
+ --max-tokens {max_tokens} \\
203
+ --gpu-memory-utilization {gpu_memory_utilization}
204
+ ```
205
+
206
+ ## Performance
207
+
208
+ - **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second
209
+ - **Model Size**: 256M parameters (ultra-compact)
210
+ - **GPU Configuration**: vLLM with {gpu_memory_utilization:.0%} GPU memory utilization
211
+
212
+ Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts)
213
+ """
214
+
215
+
216
+ def main(
217
+ input_dataset: str,
218
+ output_dataset: str,
219
+ image_column: str = "image",
220
+ batch_size: int = 32,
221
+ model: str = "ds4sd/SmolDocling-256M-preview",
222
+ max_model_len: int = 8192,
223
+ max_tokens: int = 8192,
224
+ gpu_memory_utilization: float = 0.8,
225
+ hf_token: str = None,
226
+ split: str = "train",
227
+ max_samples: int = None,
228
+ private: bool = False,
229
+ output_column: str = None,
230
+ output_format: str = "markdown",
231
+ shuffle: bool = False,
232
+ seed: int = 42,
233
+ prompt: str = "Convert page to Docling.",
234
+ ):
235
+ """Process images from HF dataset through SmolDocling model."""
236
+
237
+ # Check CUDA availability first
238
+ check_cuda_availability()
239
+
240
+ # Track processing start time
241
+ start_time = datetime.now()
242
+
243
+ # Enable HF_TRANSFER for faster downloads
244
+ os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
245
+
246
+ # Login to HF if token provided
247
+ HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
248
+ if HF_TOKEN:
249
+ login(token=HF_TOKEN)
250
+
251
+ # Load dataset
252
+ logger.info(f"Loading dataset: {input_dataset}")
253
+ dataset = load_dataset(input_dataset, split=split)
254
+
255
+ # Set output column name dynamically if not provided
256
+ if output_column is None:
257
+ # Extract model name from path (e.g., "ds4sd/SmolDocling-256M-preview" -> "smoldocling")
258
+ model_name = model.split("/")[-1].split("-")[0].lower()
259
+ output_column = f"{model_name}_text"
260
+ logger.info(f"Using dynamic output column name: {output_column}")
261
+
262
+ # Validate image column
263
+ if image_column not in dataset.column_names:
264
+ raise ValueError(
265
+ f"Column '{image_column}' not found. Available: {dataset.column_names}"
266
+ )
267
+
268
+ # Validate output format
269
+ if output_format not in ["markdown", "doctags"]:
270
+ raise ValueError(
271
+ f"Invalid output format '{output_format}'. Must be 'markdown' or 'doctags'"
272
+ )
273
+
274
+ # Shuffle if requested
275
+ if shuffle:
276
+ logger.info(f"Shuffling dataset with seed {seed}")
277
+ dataset = dataset.shuffle(seed=seed)
278
+
279
+ # Limit samples if requested
280
+ if max_samples:
281
+ dataset = dataset.select(range(min(max_samples, len(dataset))))
282
+ logger.info(f"Limited to {len(dataset)} samples")
283
+
284
+ # Initialize vLLM
285
+ logger.info(f"Initializing vLLM with model: {model}")
286
+ llm = LLM(
287
+ model=model,
288
+ trust_remote_code=True,
289
+ max_model_len=max_model_len,
290
+ gpu_memory_utilization=gpu_memory_utilization,
291
+ limit_mm_per_prompt={"image": 1},
292
+ )
293
+
294
+ sampling_params = SamplingParams(
295
+ temperature=0.0, # Deterministic for OCR
296
+ max_tokens=max_tokens,
297
+ )
298
+
299
+ # Process images in batches
300
+ all_output = []
301
+
302
+ logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
303
+ logger.info(f"Output format: {output_format}")
304
+
305
+ # Process in batches to avoid memory issues
306
+ for batch_indices in tqdm(
307
+ partition_all(batch_size, range(len(dataset))),
308
+ total=(len(dataset) + batch_size - 1) // batch_size,
309
+ desc="OCR processing",
310
+ ):
311
+ batch_indices = list(batch_indices)
312
+ batch_images = [dataset[i][image_column] for i in batch_indices]
313
+
314
+ try:
315
+ # Prepare inputs for batch
316
+ batch_inputs = [prepare_llm_input(img, prompt) for img in batch_images]
317
+
318
+ # Process with vLLM using generate
319
+ outputs = llm.generate(batch_inputs, sampling_params=sampling_params)
320
+
321
+ # Extract text from outputs
322
+ for i, output in enumerate(outputs):
323
+ raw_output = output.outputs[0].text.strip()
324
+
325
+ # Convert to markdown if requested
326
+ if output_format == "markdown":
327
+ processed_output = convert_doctags_to_markdown(raw_output)
328
+ else:
329
+ processed_output = raw_output
330
+
331
+ all_output.append(processed_output)
332
+
333
+ except Exception as e:
334
+ logger.error(f"Error processing batch: {e}")
335
+ # Add error placeholders for failed batch
336
+ all_output.extend(["[OCR FAILED]"] * len(batch_images))
337
+
338
+ # Add output column to dataset
339
+ logger.info(f"Adding {output_column} column to dataset")
340
+ dataset = dataset.add_column(output_column, all_output)
341
+
342
+ # Handle inference_info tracking
343
+ logger.info("Updating inference_info...")
344
+
345
+ # Check for existing inference_info
346
+ if "inference_info" in dataset.column_names:
347
+ # Parse existing info from first row (all rows have same info)
348
+ try:
349
+ existing_info = json.loads(dataset[0]["inference_info"])
350
+ if not isinstance(existing_info, list):
351
+ existing_info = [existing_info] # Convert old format to list
352
+ except (json.JSONDecodeError, TypeError):
353
+ existing_info = []
354
+ # Remove old column to update it
355
+ dataset = dataset.remove_columns(["inference_info"])
356
+ else:
357
+ existing_info = []
358
+
359
+ # Add new inference info
360
+ new_info = {
361
+ "column_name": output_column,
362
+ "model_id": model,
363
+ "processing_date": datetime.now().isoformat(),
364
+ "batch_size": batch_size,
365
+ "max_tokens": max_tokens,
366
+ "gpu_memory_utilization": gpu_memory_utilization,
367
+ "max_model_len": max_model_len,
368
+ "output_format": output_format,
369
+ "prompt": prompt,
370
+ "script": "smoldocling-ocr.py",
371
+ "script_version": "1.0.0",
372
+ "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/smoldocling-ocr.py",
373
+ }
374
+ existing_info.append(new_info)
375
+
376
+ # Add updated inference_info column
377
+ info_json = json.dumps(existing_info, ensure_ascii=False)
378
+ dataset = dataset.add_column("inference_info", [info_json] * len(dataset))
379
+
380
+ # Push to hub
381
+ logger.info(f"Pushing to {output_dataset}")
382
+ dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
383
+
384
+ # Calculate processing time
385
+ end_time = datetime.now()
386
+ processing_duration = end_time - start_time
387
+ processing_time = f"{processing_duration.total_seconds() / 60:.1f} minutes"
388
+
389
+ # Create and push dataset card
390
+ logger.info("Creating dataset card...")
391
+ card_content = create_dataset_card(
392
+ source_dataset=input_dataset,
393
+ model=model,
394
+ num_samples=len(dataset),
395
+ processing_time=processing_time,
396
+ output_column=output_column,
397
+ output_format=output_format,
398
+ batch_size=batch_size,
399
+ max_model_len=max_model_len,
400
+ max_tokens=max_tokens,
401
+ gpu_memory_utilization=gpu_memory_utilization,
402
+ image_column=image_column,
403
+ split=split,
404
+ )
405
+
406
+ card = DatasetCard(card_content)
407
+ card.push_to_hub(output_dataset, token=HF_TOKEN)
408
+ logger.info("✅ Dataset card created and pushed!")
409
+
410
+ logger.info("✅ OCR conversion complete!")
411
+ logger.info(
412
+ f"Dataset available at: https://huggingface.co/datasets/{output_dataset}"
413
+ )
414
+
415
+
416
+ if __name__ == "__main__":
417
+ # Show example usage if no arguments
418
+ if len(sys.argv) == 1:
419
+ print("=" * 80)
420
+ print("SmolDocling Ultra-Compact Document Processing")
421
+ print("=" * 80)
422
+ print("\nThis script extracts structured document content using")
423
+ print("the SmolDocling-256M model with vLLM acceleration.")
424
+ print("\nFeatures:")
425
+ print("- Ultra-compact 256M parameter model")
426
+ print("- DocTags format for efficient representation")
427
+ print("- Code block recognition with indentation")
428
+ print("- Mathematical formula detection")
429
+ print("- Table and chart extraction")
430
+ print("- Layout preservation with bounding boxes")
431
+ print("\nExample usage:")
432
+ print("\n1. Basic document conversion to markdown:")
433
+ print(" uv run smoldocling-ocr.py document-images extracted-docs")
434
+ print("\n2. Extract with DocTags format:")
435
+ print(" uv run smoldocling-ocr.py scientific-papers doc-analysis \\")
436
+ print(" --output-format doctags")
437
+ print("\n3. Custom settings:")
438
+ print(" uv run smoldocling-ocr.py code-docs structured-output \\")
439
+ print(" --image-column page \\")
440
+ print(" --batch-size 64 \\")
441
+ print(" --gpu-memory-utilization 0.9")
442
+ print("\n4. Process a subset for testing:")
443
+ print(" uv run smoldocling-ocr.py large-dataset test-output --max-samples 10")
444
+ print("\n5. Random sample from ordered dataset:")
445
+ print(
446
+ " uv run smoldocling-ocr.py ordered-dataset random-test --max-samples 50 --shuffle"
447
+ )
448
+ print("\n6. Running on HF Jobs:")
449
+ print(" hf jobs uv run --flavor l4x1 \\")
450
+ print(
451
+ ' -e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\'
452
+ )
453
+ print(
454
+ " https://huggingface.co/datasets/uv-scripts/ocr/raw/main/smoldocling-ocr.py \\"
455
+ )
456
+ print(" your-document-dataset \\")
457
+ print(" your-structured-output")
458
+ print("\n" + "=" * 80)
459
+ print("\nFor full help, run: uv run smoldocling-ocr.py --help")
460
+ sys.exit(0)
461
+
462
+ parser = argparse.ArgumentParser(
463
+ description="Extract structured documents using SmolDocling",
464
+ formatter_class=argparse.RawDescriptionHelpFormatter,
465
+ epilog="""
466
+ Examples:
467
+ # Basic usage
468
+ uv run smoldocling-ocr.py my-images-dataset structured-output
469
+
470
+ # With DocTags format output
471
+ uv run smoldocling-ocr.py documents doc-analysis --output-format doctags
472
+
473
+ # Process subset for testing
474
+ uv run smoldocling-ocr.py large-dataset test-output --max-samples 100
475
+
476
+ # Random sample of 100 images
477
+ uv run smoldocling-ocr.py ordered-dataset random-sample --max-samples 100 --shuffle
478
+
479
+ # Custom output column name (default: smoldocling_text)
480
+ uv run smoldocling-ocr.py images texts --output-column extracted_content
481
+ """,
482
+ )
483
+
484
+ parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
485
+ parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
486
+ parser.add_argument(
487
+ "--image-column",
488
+ default="image",
489
+ help="Column containing images (default: image)",
490
+ )
491
+ parser.add_argument(
492
+ "--batch-size",
493
+ type=int,
494
+ default=32,
495
+ help="Batch size for processing (default: 32)",
496
+ )
497
+ parser.add_argument(
498
+ "--model",
499
+ default="ds4sd/SmolDocling-256M-preview",
500
+ help="Model to use (default: ds4sd/SmolDocling-256M-preview)",
501
+ )
502
+ parser.add_argument(
503
+ "--max-model-len",
504
+ type=int,
505
+ default=8192,
506
+ help="Maximum model context length (default: 8192)",
507
+ )
508
+ parser.add_argument(
509
+ "--max-tokens",
510
+ type=int,
511
+ default=8192,
512
+ help="Maximum tokens to generate (default: 8192)",
513
+ )
514
+ parser.add_argument(
515
+ "--gpu-memory-utilization",
516
+ type=float,
517
+ default=0.8,
518
+ help="GPU memory utilization (default: 0.8)",
519
+ )
520
+ parser.add_argument("--hf-token", help="Hugging Face API token")
521
+ parser.add_argument(
522
+ "--split", default="train", help="Dataset split to use (default: train)"
523
+ )
524
+ parser.add_argument(
525
+ "--max-samples",
526
+ type=int,
527
+ help="Maximum number of samples to process (for testing)",
528
+ )
529
+ parser.add_argument(
530
+ "--private", action="store_true", help="Make output dataset private"
531
+ )
532
+ parser.add_argument(
533
+ "--output-column",
534
+ default=None,
535
+ help="Name of the output column for extracted text (default: auto-generated from model name)",
536
+ )
537
+ parser.add_argument(
538
+ "--output-format",
539
+ default="markdown",
540
+ choices=["markdown", "doctags"],
541
+ help="Output format: 'markdown' or 'doctags' (default: markdown)",
542
+ )
543
+ parser.add_argument(
544
+ "--shuffle",
545
+ action="store_true",
546
+ help="Shuffle the dataset before processing (useful for random sampling)",
547
+ )
548
+ parser.add_argument(
549
+ "--seed",
550
+ type=int,
551
+ default=42,
552
+ help="Random seed for shuffling (default: 42)",
553
+ )
554
+ parser.add_argument(
555
+ "--prompt",
556
+ default="Convert page to Docling.",
557
+ help="Custom prompt for the model (default: 'Convert page to Docling.')",
558
+ )
559
+
560
+ args = parser.parse_args()
561
+
562
+ main(
563
+ input_dataset=args.input_dataset,
564
+ output_dataset=args.output_dataset,
565
+ image_column=args.image_column,
566
+ batch_size=args.batch_size,
567
+ model=args.model,
568
+ max_model_len=args.max_model_len,
569
+ max_tokens=args.max_tokens,
570
+ gpu_memory_utilization=args.gpu_memory_utilization,
571
+ hf_token=args.hf_token,
572
+ split=args.split,
573
+ max_samples=args.max_samples,
574
+ private=args.private,
575
+ output_column=args.output_column,
576
+ output_format=args.output_format,
577
+ shuffle=args.shuffle,
578
+ seed=args.seed,
579
+ prompt=args.prompt,
580
+ )