Commit 
							
							·
						
						89f58ba
	
1
								Parent(s):
							
							cdbefb7
								
Add Nanonets OCR script with vLLM support
Browse files- UV script for document OCR using Nanonets-OCR-s model
  - Features: LaTeX equations, tables, document structure
  - Supports batch processing with vLLM
  - Includes HF Jobs examples for running on cloud
  - Added proper CUDA checks and error handling
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,134 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            viewer: false
         | 
| 3 | 
            +
            tags: [uv-script, ocr, vision-language-model, document-processing]
         | 
| 4 | 
            +
            ---
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            # UV Scripts - OCR Collection
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            This repository contains UV scripts for OCR (Optical Character Recognition) tasks using various models.
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            ## 🚧 Early Testing Version
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            This is an early version for testing. Documentation and examples will be expanded based on feedback.
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            ## Available Scripts
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            ### 1. Nanonets OCR (`nanonets-ocr.py`)
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            Converts document images to structured markdown using the Nanonets-OCR-s model.
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            **Features:**
         | 
| 21 | 
            +
            - LaTeX equation recognition
         | 
| 22 | 
            +
            - Table extraction and formatting
         | 
| 23 | 
            +
            - Document structure preservation
         | 
| 24 | 
            +
            - Batch processing with vLLM
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            **Requirements:**
         | 
| 27 | 
            +
            - GPU with CUDA support
         | 
| 28 | 
            +
            - Python 3.11+
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            ## Quick Test
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            To test the script with a sample dataset:
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            ```bash
         | 
| 35 | 
            +
            # Test with 5 samples from a document dataset
         | 
| 36 | 
            +
            uv run nanonets-ocr.py \
         | 
| 37 | 
            +
                davanstrien/scientific-papers-small \
         | 
| 38 | 
            +
                my-test-ocr-output \
         | 
| 39 | 
            +
                --max-samples 5
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            # Or if you have a specific dataset with images
         | 
| 42 | 
            +
            uv run nanonets-ocr.py \
         | 
| 43 | 
            +
                your-username/your-image-dataset \
         | 
| 44 | 
            +
                your-username/test-ocr-results \
         | 
| 45 | 
            +
                --image-column image \
         | 
| 46 | 
            +
                --max-samples 10
         | 
| 47 | 
            +
            ```
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            ## Example Output
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            The script adds a `markdown` column to your dataset containing the extracted text in markdown format, preserving:
         | 
| 52 | 
            +
            - Headers and document structure
         | 
| 53 | 
            +
            - Tables with proper formatting
         | 
| 54 | 
            +
            - Mathematical equations in LaTeX
         | 
| 55 | 
            +
            - Lists and other formatting
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            ## GPU Memory
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            If you encounter GPU memory issues, adjust the batch size and memory utilization:
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            ```bash
         | 
| 62 | 
            +
            uv run nanonets-ocr.py input output \
         | 
| 63 | 
            +
                --batch-size 4 \
         | 
| 64 | 
            +
                --gpu-memory-utilization 0.5
         | 
| 65 | 
            +
            ```
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            ## Running on HuggingFace Jobs
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            Run this script on HF infrastructure without needing your own GPU!
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            ### Command Line
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            ```bash
         | 
| 74 | 
            +
            # Basic usage
         | 
| 75 | 
            +
            hf jobs uv run --flavor l4x1 \
         | 
| 76 | 
            +
                https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
         | 
| 77 | 
            +
                input-dataset-id output-dataset-id
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            # Full example with options
         | 
| 80 | 
            +
            hf jobs uv run --flavor l4x1 \
         | 
| 81 | 
            +
                https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
         | 
| 82 | 
            +
                NationalLibraryOfScotland/Scottish-School-Exam-Papers \
         | 
| 83 | 
            +
                your-username/scottish-exams-ocr \
         | 
| 84 | 
            +
                --image-column image \
         | 
| 85 | 
            +
                --max-model-len 16384 \
         | 
| 86 | 
            +
                --batch-size 16
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            # With HF token for private repos
         | 
| 89 | 
            +
            hf jobs uv run --flavor l4x1 --secret HF_TOKEN=$HF_TOKEN \
         | 
| 90 | 
            +
                https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
         | 
| 91 | 
            +
                input-dataset output-dataset \
         | 
| 92 | 
            +
                --private
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            # With vLLM Docker image for optimized performance
         | 
| 95 | 
            +
            hf jobs uv run \
         | 
| 96 | 
            +
                --flavor l4x1 \
         | 
| 97 | 
            +
                --image vllm/vllm-openai:latest \
         | 
| 98 | 
            +
                https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
         | 
| 99 | 
            +
                input-dataset output-dataset \
         | 
| 100 | 
            +
                --batch-size 32
         | 
| 101 | 
            +
            ```
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            ### Python API
         | 
| 104 | 
            +
             | 
| 105 | 
            +
            ```python
         | 
| 106 | 
            +
            from huggingface_hub import run_uv_job
         | 
| 107 | 
            +
             | 
| 108 | 
            +
            # Run the OCR script
         | 
| 109 | 
            +
            job = run_uv_job(
         | 
| 110 | 
            +
                "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py",
         | 
| 111 | 
            +
                args=[
         | 
| 112 | 
            +
                    "input-dataset-id",
         | 
| 113 | 
            +
                    "output-dataset-id", 
         | 
| 114 | 
            +
                    "--image-column", "image",
         | 
| 115 | 
            +
                    "--max-model-len", "16384"
         | 
| 116 | 
            +
                ],
         | 
| 117 | 
            +
                flavor="l4x1",
         | 
| 118 | 
            +
                secrets={"HF_TOKEN": "your-token"}  # if needed
         | 
| 119 | 
            +
            )
         | 
| 120 | 
            +
            ```
         | 
| 121 | 
            +
             | 
| 122 | 
            +
            ### Recommended GPU Flavors
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            - **`l4x1`** (24GB) - Recommended for most OCR tasks
         | 
| 125 | 
            +
            - **`t4-small`** (16GB) - For smaller batches or lower resolution
         | 
| 126 | 
            +
            - **`a10g-small`** (24GB) - Alternative to L4
         | 
| 127 | 
            +
            - **`l40sx1`** (48GB) - For very large batches
         | 
| 128 | 
            +
            - **`a100-large`** (80GB) - Maximum performance
         | 
| 129 | 
            +
             | 
| 130 | 
            +
            ## Coming Soon
         | 
| 131 | 
            +
             | 
| 132 | 
            +
            - Additional OCR models (RolmOCR, OlmOCR)
         | 
| 133 | 
            +
            - Performance benchmarks
         | 
| 134 | 
            +
            - More examples and use cases
         | 

