Commit 
							
							·
						
						cea7723
	
1
								Parent(s):
							
							b3cfa7b
								
Optimize default settings based on performance testing
Browse files- Increase default batch size from 8 to 32
- Increase default GPU memory utilization from 0.7 to 0.8
- Update README with new defaults and simple performance tip
- These changes provide ~2-3x speedup based on testing
- README.md +56 -11
- __pycache__/dots-ocr.cpython-313.pyc +0 -0
- dots-ocr.py +729 -0
- nanonets-ocr.py +6 -6
    	
        README.md
    CHANGED
    
    | @@ -40,6 +40,16 @@ State-of-the-art document OCR using [nanonets/Nanonets-OCR-s](https://huggingfac | |
| 40 | 
             
            - 🖼️ **Images** - Captions and descriptions included
         | 
| 41 | 
             
            - ☑️ **Forms** - Checkboxes rendered as ☐/☑
         | 
| 42 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 43 | 
             
            ## 💻 Usage Examples
         | 
| 44 |  | 
| 45 | 
             
            ### Run on HuggingFace Jobs (Recommended)
         | 
| @@ -52,6 +62,14 @@ hf jobs uv run --flavor l4x1 \ | |
| 52 | 
             
                https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
         | 
| 53 | 
             
                your-input-dataset your-output-dataset
         | 
| 54 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 55 | 
             
            # Real example with UFO dataset 🛸
         | 
| 56 | 
             
            hf jobs uv run \
         | 
| 57 | 
             
                --flavor a10g-large \
         | 
| @@ -62,7 +80,7 @@ hf jobs uv run \ | |
| 62 | 
             
                your-username/ufo-ocr \
         | 
| 63 | 
             
                --image-column image \
         | 
| 64 | 
             
                --max-model-len 16384 \
         | 
| 65 | 
            -
                --batch-size  | 
| 66 |  | 
| 67 | 
             
            # Private dataset with custom settings
         | 
| 68 | 
             
            hf jobs uv run --flavor l40sx1 \
         | 
| @@ -96,6 +114,11 @@ uv run nanonets-ocr.py input-dataset output-dataset | |
| 96 | 
             
            # Or run directly from URL
         | 
| 97 | 
             
            uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
         | 
| 98 | 
             
                input-dataset output-dataset
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 99 | 
             
            ```
         | 
| 100 |  | 
| 101 | 
             
            ## 📁 Works With
         | 
| @@ -104,15 +127,37 @@ Any HuggingFace dataset containing images - documents, forms, receipts, books, h | |
| 104 |  | 
| 105 | 
             
            ## 🎛️ Configuration Options
         | 
| 106 |  | 
| 107 | 
            -
             | 
| 108 | 
            -
             | 
| 109 | 
            -
            |  | 
| 110 | 
            -
            |  | 
| 111 | 
            -
            | `-- | 
| 112 | 
            -
            | `-- | 
| 113 | 
            -
            | `-- | 
| 114 | 
            -
            | `-- | 
| 115 | 
            -
            | `-- | 
| 116 | 
            -
            | `-- | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 117 |  | 
| 118 | 
             
            More OCR VLM Scripts coming soon! Stay tuned for updates!
         | 
|  | |
| 40 | 
             
            - 🖼️ **Images** - Captions and descriptions included
         | 
| 41 | 
             
            - ☑️ **Forms** - Checkboxes rendered as ☐/☑
         | 
| 42 |  | 
| 43 | 
            +
            ### dots.ocr (`dots-ocr.py`)
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            Advanced document layout analysis and OCR using [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) that provides:
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            - 🎯 **Layout detection** - Bounding boxes for all document elements
         | 
| 48 | 
            +
            - 📑 **Category classification** - Text, Title, Table, Formula, Picture, etc.
         | 
| 49 | 
            +
            - 📖 **Reading order** - Preserves natural reading flow
         | 
| 50 | 
            +
            - 🌍 **Multilingual support** - Handles multiple languages seamlessly
         | 
| 51 | 
            +
            - 🔧 **Flexible output** - JSON, structured columns, or markdown
         | 
| 52 | 
            +
             | 
| 53 | 
             
            ## 💻 Usage Examples
         | 
| 54 |  | 
| 55 | 
             
            ### Run on HuggingFace Jobs (Recommended)
         | 
|  | |
| 62 | 
             
                https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
         | 
| 63 | 
             
                your-input-dataset your-output-dataset
         | 
| 64 |  | 
| 65 | 
            +
            # Document layout analysis with dots.ocr
         | 
| 66 | 
            +
            hf jobs uv run --flavor l4x1 \
         | 
| 67 | 
            +
                https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \
         | 
| 68 | 
            +
                your-input-dataset your-layout-dataset \
         | 
| 69 | 
            +
                --mode layout-all \
         | 
| 70 | 
            +
                --output-format structured \
         | 
| 71 | 
            +
                --use-transformers  # More compatible backend
         | 
| 72 | 
            +
             | 
| 73 | 
             
            # Real example with UFO dataset 🛸
         | 
| 74 | 
             
            hf jobs uv run \
         | 
| 75 | 
             
                --flavor a10g-large \
         | 
|  | |
| 80 | 
             
                your-username/ufo-ocr \
         | 
| 81 | 
             
                --image-column image \
         | 
| 82 | 
             
                --max-model-len 16384 \
         | 
| 83 | 
            +
                --batch-size 128
         | 
| 84 |  | 
| 85 | 
             
            # Private dataset with custom settings
         | 
| 86 | 
             
            hf jobs uv run --flavor l40sx1 \
         | 
|  | |
| 114 | 
             
            # Or run directly from URL
         | 
| 115 | 
             
            uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
         | 
| 116 | 
             
                input-dataset output-dataset
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            # dots.ocr examples
         | 
| 119 | 
            +
            uv run dots-ocr.py documents analyzed-docs  # Full layout + OCR
         | 
| 120 | 
            +
            uv run dots-ocr.py scans layouts --mode layout-only  # Layout only
         | 
| 121 | 
            +
            uv run dots-ocr.py papers markdown --output-format markdown  # As markdown
         | 
| 122 | 
             
            ```
         | 
| 123 |  | 
| 124 | 
             
            ## 📁 Works With
         | 
|  | |
| 127 |  | 
| 128 | 
             
            ## 🎛️ Configuration Options
         | 
| 129 |  | 
| 130 | 
            +
            ### Common Options (Both Scripts)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
            | Option                     | Default | Description                   |
         | 
| 133 | 
            +
            | -------------------------- | ------- | ----------------------------- |
         | 
| 134 | 
            +
            | `--image-column`           | `image` | Column containing images      |
         | 
| 135 | 
            +
            | `--batch-size`             | `32`    | Images processed together     |
         | 
| 136 | 
            +
            | `--max-model-len`          | `8192`/`24000`* | Max context length     |
         | 
| 137 | 
            +
            | `--max-tokens`             | `4096`/`16384`* | Max output tokens      |
         | 
| 138 | 
            +
            | `--gpu-memory-utilization` | `0.8`   | GPU memory usage (0.0-1.0)    |
         | 
| 139 | 
            +
            | `--split`                  | `train` | Dataset split to process      |
         | 
| 140 | 
            +
            | `--max-samples`            | None    | Limit samples (for testing)   |
         | 
| 141 | 
            +
            | `--private`                | False   | Make output dataset private   |
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            *dots.ocr uses higher defaults (24000/16384)
         | 
| 144 | 
            +
             | 
| 145 | 
            +
            ### dots.ocr Specific Options
         | 
| 146 | 
            +
             | 
| 147 | 
            +
            | Option              | Default | Description                           |
         | 
| 148 | 
            +
            | ------------------- | ------- | ------------------------------------- |
         | 
| 149 | 
            +
            | `--mode`            | `layout-all` | Processing mode: `layout-all`, `layout-only`, `ocr`, `grounding-ocr` |
         | 
| 150 | 
            +
            | `--output-format`   | `json` | Output format: `json`, `structured`, `markdown` |
         | 
| 151 | 
            +
            | `--filter-category` | None   | Filter by layout category (e.g., `Table`, `Formula`) |
         | 
| 152 | 
            +
            | `--output-column`   | `dots_ocr_output` | Column name for JSON output |
         | 
| 153 | 
            +
            | `--bbox-column`     | `layout_bboxes` | Column for bounding boxes (structured mode) |
         | 
| 154 | 
            +
            | `--category-column` | `layout_categories` | Column for categories (structured mode) |
         | 
| 155 | 
            +
            | `--text-column`     | `layout_texts` | Column for texts (structured mode) |
         | 
| 156 | 
            +
            | `--markdown-column` | `markdown` | Column for markdown output |
         | 
| 157 | 
            +
            | `--use-transformers`| `False` | Use transformers backend instead of vLLM (more compatible) |
         | 
| 158 | 
            +
             | 
| 159 | 
            +
            💡 **Performance tip**: Increase batch size for faster processing (e.g., `--batch-size 128` for A10G GPUs)
         | 
| 160 | 
            +
             | 
| 161 | 
            +
            ⚠️ **dots.ocr Note**: If you encounter vLLM initialization errors, use `--use-transformers` for a more compatible (but slower) backend.
         | 
| 162 |  | 
| 163 | 
             
            More OCR VLM Scripts coming soon! Stay tuned for updates!
         | 
    	
        __pycache__/dots-ocr.cpython-313.pyc
    ADDED
    
    | Binary file (22.6 kB). View file | 
|  | 
    	
        dots-ocr.py
    ADDED
    
    | @@ -0,0 +1,729 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # /// script
         | 
| 2 | 
            +
            # requires-python = ">=3.11"
         | 
| 3 | 
            +
            # dependencies = [
         | 
| 4 | 
            +
            #     "datasets",
         | 
| 5 | 
            +
            #     "huggingface-hub[hf_transfer]",
         | 
| 6 | 
            +
            #     "pillow",
         | 
| 7 | 
            +
            #     "vllm",
         | 
| 8 | 
            +
            #     "transformers>=4.45.0",
         | 
| 9 | 
            +
            #     "qwen-vl-utils",
         | 
| 10 | 
            +
            #     "tqdm",
         | 
| 11 | 
            +
            #     "toolz",
         | 
| 12 | 
            +
            #     "torch",
         | 
| 13 | 
            +
            #     "flash-attn",
         | 
| 14 | 
            +
            # ]
         | 
| 15 | 
            +
            #
         | 
| 16 | 
            +
            # ///
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            """
         | 
| 19 | 
            +
            Document layout analysis and OCR using dots.ocr with vLLM.
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            This script processes document images through the dots.ocr model to extract
         | 
| 22 | 
            +
            layout information, text content, or both. Supports multiple output formats
         | 
| 23 | 
            +
            including JSON, structured columns, and markdown.
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            Features:
         | 
| 26 | 
            +
            - Layout detection with bounding boxes and categories
         | 
| 27 | 
            +
            - Text extraction with reading order preservation
         | 
| 28 | 
            +
            - Multiple prompt modes for different tasks
         | 
| 29 | 
            +
            - Flexible output formats
         | 
| 30 | 
            +
            - Multilingual document support
         | 
| 31 | 
            +
            """
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            import argparse
         | 
| 34 | 
            +
            import base64
         | 
| 35 | 
            +
            import io
         | 
| 36 | 
            +
            import json
         | 
| 37 | 
            +
            import logging
         | 
| 38 | 
            +
            import os
         | 
| 39 | 
            +
            import sys
         | 
| 40 | 
            +
            from typing import Any, Dict, List, Optional, Union
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            import torch
         | 
| 43 | 
            +
            from datasets import load_dataset
         | 
| 44 | 
            +
            from huggingface_hub import login
         | 
| 45 | 
            +
            from PIL import Image
         | 
| 46 | 
            +
            from toolz import partition_all
         | 
| 47 | 
            +
            from tqdm.auto import tqdm
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            # Import both vLLM and transformers - we'll use based on flag
         | 
| 50 | 
            +
            try:
         | 
| 51 | 
            +
                from vllm import LLM, SamplingParams
         | 
| 52 | 
            +
                VLLM_AVAILABLE = True
         | 
| 53 | 
            +
            except ImportError:
         | 
| 54 | 
            +
                VLLM_AVAILABLE = False
         | 
| 55 | 
            +
                
         | 
| 56 | 
            +
            from transformers import AutoModelForCausalLM, AutoProcessor
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            logging.basicConfig(level=logging.INFO)
         | 
| 59 | 
            +
            logger = logging.getLogger(__name__)
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            # Try to import qwen_vl_utils for transformers backend
         | 
| 62 | 
            +
            try:
         | 
| 63 | 
            +
                from qwen_vl_utils import process_vision_info
         | 
| 64 | 
            +
                QWEN_VL_AVAILABLE = True
         | 
| 65 | 
            +
            except ImportError:
         | 
| 66 | 
            +
                QWEN_VL_AVAILABLE = False
         | 
| 67 | 
            +
                logger.warning("qwen_vl_utils not available, transformers backend may not work properly")
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            # Prompt definitions from dots.ocr's dict_promptmode_to_prompt
         | 
| 70 | 
            +
            PROMPT_MODES = {
         | 
| 71 | 
            +
                "layout-all": """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            1. Bbox format: [x1, y1, x2, y2]
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            3. Text Extraction & Formatting Rules:
         | 
| 78 | 
            +
                - Picture: For the 'Picture' category, the text field should be omitted.
         | 
| 79 | 
            +
                - Formula: Format its text as LaTeX.
         | 
| 80 | 
            +
                - Table: Format its text as HTML.
         | 
| 81 | 
            +
                - All Others (Text, Title, etc.): Format their text as Markdown.
         | 
| 82 | 
            +
             | 
| 83 | 
            +
            4. Constraints:
         | 
| 84 | 
            +
                - The output text must be the original text from the image, with no translation.
         | 
| 85 | 
            +
                - All layout elements must be sorted according to human reading order.
         | 
| 86 | 
            +
             | 
| 87 | 
            +
            5. Final Output: The entire output must be a single JSON object.
         | 
| 88 | 
            +
            """,
         | 
| 89 | 
            +
                
         | 
| 90 | 
            +
                "layout-only": """Please output the layout information from this PDF image, including each layout's bbox and its category. The bbox should be in the format [x1, y1, x2, y2]. The layout categories for the PDF document include ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. Do not output the corresponding text. The layout result should be in JSON format.""",
         | 
| 91 | 
            +
                
         | 
| 92 | 
            +
                "ocr": """Extract the text content from this image.""",
         | 
| 93 | 
            +
                
         | 
| 94 | 
            +
                "grounding-ocr": """Extract text from the given bounding box on the image (format: [x1, y1, x2, y2]).\nBounding Box:\n"""
         | 
| 95 | 
            +
            }
         | 
| 96 | 
            +
             | 
| 97 | 
            +
             | 
| 98 | 
            +
            def check_cuda_availability():
         | 
| 99 | 
            +
                """Check if CUDA is available and exit if not."""
         | 
| 100 | 
            +
                if not torch.cuda.is_available():
         | 
| 101 | 
            +
                    logger.error("CUDA is not available. This script requires a GPU.")
         | 
| 102 | 
            +
                    logger.error("Please run on a machine with a CUDA-capable GPU.")
         | 
| 103 | 
            +
                    sys.exit(1)
         | 
| 104 | 
            +
                else:
         | 
| 105 | 
            +
                    logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
         | 
| 106 | 
            +
             | 
| 107 | 
            +
             | 
| 108 | 
            +
            def make_dots_message(
         | 
| 109 | 
            +
                image: Union[Image.Image, Dict[str, Any], str],
         | 
| 110 | 
            +
                mode: str = "layout-all",
         | 
| 111 | 
            +
                bbox: Optional[List[int]] = None,
         | 
| 112 | 
            +
            ) -> List[Dict]:
         | 
| 113 | 
            +
                """Create chat message for dots.ocr processing."""
         | 
| 114 | 
            +
                # Convert to PIL Image if needed
         | 
| 115 | 
            +
                if isinstance(image, Image.Image):
         | 
| 116 | 
            +
                    pil_img = image
         | 
| 117 | 
            +
                elif isinstance(image, dict) and "bytes" in image:
         | 
| 118 | 
            +
                    pil_img = Image.open(io.BytesIO(image["bytes"]))
         | 
| 119 | 
            +
                elif isinstance(image, str):
         | 
| 120 | 
            +
                    pil_img = Image.open(image)
         | 
| 121 | 
            +
                else:
         | 
| 122 | 
            +
                    raise ValueError(f"Unsupported image type: {type(image)}")
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                # Convert to base64 data URI
         | 
| 125 | 
            +
                buf = io.BytesIO()
         | 
| 126 | 
            +
                pil_img.save(buf, format="PNG")
         | 
| 127 | 
            +
                data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                # Get prompt for the specified mode
         | 
| 130 | 
            +
                prompt = PROMPT_MODES.get(mode, PROMPT_MODES["layout-all"])
         | 
| 131 | 
            +
                
         | 
| 132 | 
            +
                # Add bbox for grounding-ocr mode
         | 
| 133 | 
            +
                if mode == "grounding-ocr" and bbox:
         | 
| 134 | 
            +
                    prompt = prompt + str(bbox)
         | 
| 135 | 
            +
                
         | 
| 136 | 
            +
                # Return message in vLLM format
         | 
| 137 | 
            +
                return [
         | 
| 138 | 
            +
                    {
         | 
| 139 | 
            +
                        "role": "user",
         | 
| 140 | 
            +
                        "content": [
         | 
| 141 | 
            +
                            {"type": "image_url", "image_url": {"url": data_uri}},
         | 
| 142 | 
            +
                            {"type": "text", "text": prompt},
         | 
| 143 | 
            +
                        ],
         | 
| 144 | 
            +
                    }
         | 
| 145 | 
            +
                ]
         | 
| 146 | 
            +
             | 
| 147 | 
            +
             | 
| 148 | 
            +
            def parse_dots_output(
         | 
| 149 | 
            +
                output: str,
         | 
| 150 | 
            +
                output_format: str = "json",
         | 
| 151 | 
            +
                filter_category: Optional[str] = None,
         | 
| 152 | 
            +
                mode: str = "layout-all",
         | 
| 153 | 
            +
            ) -> Union[str, Dict[str, List]]:
         | 
| 154 | 
            +
                """Parse dots.ocr output and convert to requested format."""
         | 
| 155 | 
            +
                
         | 
| 156 | 
            +
                # For simple OCR mode, return text directly
         | 
| 157 | 
            +
                if mode == "ocr":
         | 
| 158 | 
            +
                    return output.strip()
         | 
| 159 | 
            +
                
         | 
| 160 | 
            +
                try:
         | 
| 161 | 
            +
                    # Parse JSON output
         | 
| 162 | 
            +
                    data = json.loads(output.strip())
         | 
| 163 | 
            +
                    
         | 
| 164 | 
            +
                    # Filter by category if requested
         | 
| 165 | 
            +
                    if filter_category and "categories" in data:
         | 
| 166 | 
            +
                        indices = [i for i, cat in enumerate(data["categories"]) if cat == filter_category]
         | 
| 167 | 
            +
                        filtered_data = {
         | 
| 168 | 
            +
                            "bboxes": [data["bboxes"][i] for i in indices],
         | 
| 169 | 
            +
                            "categories": [data["categories"][i] for i in indices],
         | 
| 170 | 
            +
                        }
         | 
| 171 | 
            +
                        
         | 
| 172 | 
            +
                        # Only include texts if present (layout-all mode)
         | 
| 173 | 
            +
                        if "texts" in data:
         | 
| 174 | 
            +
                            filtered_data["texts"] = [data["texts"][i] for i in indices]
         | 
| 175 | 
            +
                        
         | 
| 176 | 
            +
                        # Include reading_order if present
         | 
| 177 | 
            +
                        if "reading_order" in data:
         | 
| 178 | 
            +
                            # Filter reading order to only include indices that are in our filtered set
         | 
| 179 | 
            +
                            filtered_reading_order = []
         | 
| 180 | 
            +
                            for group in data.get("reading_order", []):
         | 
| 181 | 
            +
                                filtered_group = [idx for idx in group if idx in indices]
         | 
| 182 | 
            +
                                if filtered_group:
         | 
| 183 | 
            +
                                    # Remap indices to new positions
         | 
| 184 | 
            +
                                    remapped_group = [indices.index(idx) for idx in filtered_group]
         | 
| 185 | 
            +
                                    filtered_reading_order.append(remapped_group)
         | 
| 186 | 
            +
                            if filtered_reading_order:
         | 
| 187 | 
            +
                                filtered_data["reading_order"] = filtered_reading_order
         | 
| 188 | 
            +
                        
         | 
| 189 | 
            +
                        data = filtered_data
         | 
| 190 | 
            +
                    
         | 
| 191 | 
            +
                    if output_format == "json":
         | 
| 192 | 
            +
                        return json.dumps(data, ensure_ascii=False)
         | 
| 193 | 
            +
                    
         | 
| 194 | 
            +
                    elif output_format == "structured":
         | 
| 195 | 
            +
                        # Return structured data for column creation
         | 
| 196 | 
            +
                        result = {
         | 
| 197 | 
            +
                            "bboxes": data.get("bboxes", []),
         | 
| 198 | 
            +
                            "categories": data.get("categories", []),
         | 
| 199 | 
            +
                        }
         | 
| 200 | 
            +
                        
         | 
| 201 | 
            +
                        # Only include texts for layout-all mode
         | 
| 202 | 
            +
                        if mode == "layout-all":
         | 
| 203 | 
            +
                            result["texts"] = data.get("texts", [])
         | 
| 204 | 
            +
                        else:
         | 
| 205 | 
            +
                            result["texts"] = []
         | 
| 206 | 
            +
                        
         | 
| 207 | 
            +
                        return result
         | 
| 208 | 
            +
                    
         | 
| 209 | 
            +
                    elif output_format == "markdown":
         | 
| 210 | 
            +
                        # Convert to markdown format
         | 
| 211 | 
            +
                        # Only works well with layout-all mode
         | 
| 212 | 
            +
                        if mode != "layout-all" or "texts" not in data:
         | 
| 213 | 
            +
                            logger.warning("Markdown format works best with layout-all mode")
         | 
| 214 | 
            +
                            return json.dumps(data, ensure_ascii=False)
         | 
| 215 | 
            +
                        
         | 
| 216 | 
            +
                        md_lines = []
         | 
| 217 | 
            +
                        texts = data.get("texts", [])
         | 
| 218 | 
            +
                        categories = data.get("categories", [])
         | 
| 219 | 
            +
                        reading_order = data.get("reading_order", [])
         | 
| 220 | 
            +
                        
         | 
| 221 | 
            +
                        # If reading order is provided, use it
         | 
| 222 | 
            +
                        if reading_order:
         | 
| 223 | 
            +
                            for group in reading_order:
         | 
| 224 | 
            +
                                for idx in group:
         | 
| 225 | 
            +
                                    if idx < len(texts) and idx < len(categories):
         | 
| 226 | 
            +
                                        text = texts[idx]
         | 
| 227 | 
            +
                                        category = categories[idx]
         | 
| 228 | 
            +
                                        md_lines.append(format_markdown_text(text, category))
         | 
| 229 | 
            +
                        else:
         | 
| 230 | 
            +
                            # Fall back to sequential order
         | 
| 231 | 
            +
                            for text, category in zip(texts, categories):
         | 
| 232 | 
            +
                                md_lines.append(format_markdown_text(text, category))
         | 
| 233 | 
            +
                        
         | 
| 234 | 
            +
                        return "\n".join(md_lines)
         | 
| 235 | 
            +
                        
         | 
| 236 | 
            +
                except json.JSONDecodeError as e:
         | 
| 237 | 
            +
                    logger.warning(f"Failed to parse JSON output: {e}")
         | 
| 238 | 
            +
                    return output.strip()
         | 
| 239 | 
            +
                except Exception as e:
         | 
| 240 | 
            +
                    logger.error(f"Error parsing output: {e}")
         | 
| 241 | 
            +
                    return output.strip()
         | 
| 242 | 
            +
             | 
| 243 | 
            +
             | 
| 244 | 
            +
            def format_markdown_text(text: str, category: str) -> str:
         | 
| 245 | 
            +
                """Format text based on its category for markdown output."""
         | 
| 246 | 
            +
                if category == "Title":
         | 
| 247 | 
            +
                    return f"# {text}\n"
         | 
| 248 | 
            +
                elif category == "Section-header":
         | 
| 249 | 
            +
                    return f"## {text}\n"
         | 
| 250 | 
            +
                elif category == "List-item":
         | 
| 251 | 
            +
                    return f"- {text}"
         | 
| 252 | 
            +
                elif category == "Page-header" or category == "Page-footer":
         | 
| 253 | 
            +
                    return f"_{text}_\n"
         | 
| 254 | 
            +
                elif category == "Caption":
         | 
| 255 | 
            +
                    return f"**{text}**\n"
         | 
| 256 | 
            +
                elif category == "Footnote":
         | 
| 257 | 
            +
                    return f"[^{text}]\n"
         | 
| 258 | 
            +
                elif category == "Table":
         | 
| 259 | 
            +
                    # Tables are already in HTML format from dots.ocr
         | 
| 260 | 
            +
                    return f"\n{text}\n"
         | 
| 261 | 
            +
                elif category == "Formula":
         | 
| 262 | 
            +
                    # Formulas are already in LaTeX format
         | 
| 263 | 
            +
                    return f"\n${text}$\n"
         | 
| 264 | 
            +
                elif category == "Picture":
         | 
| 265 | 
            +
                    # Pictures don't have text in dots.ocr output
         | 
| 266 | 
            +
                    return "\n![Image]()\n"
         | 
| 267 | 
            +
                else:  # Text and any other categories
         | 
| 268 | 
            +
                    return f"{text}\n"
         | 
| 269 | 
            +
             | 
| 270 | 
            +
             | 
| 271 | 
            +
            def process_with_transformers(
         | 
| 272 | 
            +
                images: List[Union[Image.Image, Dict[str, Any], str]],
         | 
| 273 | 
            +
                model,
         | 
| 274 | 
            +
                processor,
         | 
| 275 | 
            +
                mode: str = "layout-all",
         | 
| 276 | 
            +
                max_new_tokens: int = 16384,
         | 
| 277 | 
            +
            ) -> List[str]:
         | 
| 278 | 
            +
                """Process images using transformers instead of vLLM."""
         | 
| 279 | 
            +
                outputs = []
         | 
| 280 | 
            +
                
         | 
| 281 | 
            +
                for image in tqdm(images, desc="Processing with transformers"):
         | 
| 282 | 
            +
                    # Convert to PIL Image if needed
         | 
| 283 | 
            +
                    if isinstance(image, dict) and "bytes" in image:
         | 
| 284 | 
            +
                        pil_image = Image.open(io.BytesIO(image["bytes"]))
         | 
| 285 | 
            +
                    elif isinstance(image, str):
         | 
| 286 | 
            +
                        pil_image = Image.open(image)
         | 
| 287 | 
            +
                    else:
         | 
| 288 | 
            +
                        pil_image = image
         | 
| 289 | 
            +
                        
         | 
| 290 | 
            +
                    # Get prompt for the mode
         | 
| 291 | 
            +
                    prompt = PROMPT_MODES.get(mode, PROMPT_MODES["layout-all"])
         | 
| 292 | 
            +
                    
         | 
| 293 | 
            +
                    # Create messages in the format expected by dots.ocr
         | 
| 294 | 
            +
                    messages = [
         | 
| 295 | 
            +
                        {
         | 
| 296 | 
            +
                            "role": "user",
         | 
| 297 | 
            +
                            "content": [
         | 
| 298 | 
            +
                                {"type": "image", "image": pil_image},
         | 
| 299 | 
            +
                                {"type": "text", "text": prompt}
         | 
| 300 | 
            +
                            ]
         | 
| 301 | 
            +
                        }
         | 
| 302 | 
            +
                    ]
         | 
| 303 | 
            +
                    
         | 
| 304 | 
            +
                    # Preparation for inference (following demo code)
         | 
| 305 | 
            +
                    text = processor.apply_chat_template(
         | 
| 306 | 
            +
                        messages, 
         | 
| 307 | 
            +
                        tokenize=False, 
         | 
| 308 | 
            +
                        add_generation_prompt=True
         | 
| 309 | 
            +
                    )
         | 
| 310 | 
            +
                    
         | 
| 311 | 
            +
                    if QWEN_VL_AVAILABLE:
         | 
| 312 | 
            +
                        # Use process_vision_info as shown in demo
         | 
| 313 | 
            +
                        image_inputs, video_inputs = process_vision_info(messages)
         | 
| 314 | 
            +
                        inputs = processor(
         | 
| 315 | 
            +
                            text=[text],
         | 
| 316 | 
            +
                            images=image_inputs,
         | 
| 317 | 
            +
                            videos=video_inputs,
         | 
| 318 | 
            +
                            padding=True,
         | 
| 319 | 
            +
                            return_tensors="pt",
         | 
| 320 | 
            +
                        )
         | 
| 321 | 
            +
                    else:
         | 
| 322 | 
            +
                        # Fallback approach without qwen_vl_utils
         | 
| 323 | 
            +
                        inputs = processor(
         | 
| 324 | 
            +
                            text=text,
         | 
| 325 | 
            +
                            images=[pil_image],
         | 
| 326 | 
            +
                            return_tensors="pt",
         | 
| 327 | 
            +
                        )
         | 
| 328 | 
            +
                    
         | 
| 329 | 
            +
                    inputs = inputs.to(model.device)
         | 
| 330 | 
            +
                    
         | 
| 331 | 
            +
                    # Generate
         | 
| 332 | 
            +
                    with torch.no_grad():
         | 
| 333 | 
            +
                        generated_ids = model.generate(
         | 
| 334 | 
            +
                            **inputs,
         | 
| 335 | 
            +
                            max_new_tokens=max_new_tokens,
         | 
| 336 | 
            +
                            temperature=0.0,
         | 
| 337 | 
            +
                            do_sample=False,
         | 
| 338 | 
            +
                        )
         | 
| 339 | 
            +
                    
         | 
| 340 | 
            +
                    # Decode output (following demo code)
         | 
| 341 | 
            +
                    generated_ids_trimmed = [
         | 
| 342 | 
            +
                        out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
         | 
| 343 | 
            +
                    ]
         | 
| 344 | 
            +
                    output_text = processor.batch_decode(
         | 
| 345 | 
            +
                        generated_ids_trimmed, 
         | 
| 346 | 
            +
                        skip_special_tokens=True, 
         | 
| 347 | 
            +
                        clean_up_tokenization_spaces=False
         | 
| 348 | 
            +
                    )[0]
         | 
| 349 | 
            +
                    
         | 
| 350 | 
            +
                    outputs.append(output_text.strip())
         | 
| 351 | 
            +
                
         | 
| 352 | 
            +
                return outputs
         | 
| 353 | 
            +
             | 
| 354 | 
            +
             | 
| 355 | 
            +
            def main(
         | 
| 356 | 
            +
                input_dataset: str,
         | 
| 357 | 
            +
                output_dataset: str,
         | 
| 358 | 
            +
                image_column: str = "image",
         | 
| 359 | 
            +
                mode: str = "layout-all",
         | 
| 360 | 
            +
                output_format: str = "json",
         | 
| 361 | 
            +
                filter_category: Optional[str] = None,
         | 
| 362 | 
            +
                batch_size: int = 32,
         | 
| 363 | 
            +
                model: str = "rednote-hilab/dots.ocr",
         | 
| 364 | 
            +
                max_model_len: int = 24000,
         | 
| 365 | 
            +
                max_tokens: int = 16384,
         | 
| 366 | 
            +
                gpu_memory_utilization: float = 0.8,
         | 
| 367 | 
            +
                hf_token: Optional[str] = None,
         | 
| 368 | 
            +
                split: str = "train",
         | 
| 369 | 
            +
                max_samples: Optional[int] = None,
         | 
| 370 | 
            +
                private: bool = False,
         | 
| 371 | 
            +
                use_transformers: bool = False,
         | 
| 372 | 
            +
                # Column name parameters
         | 
| 373 | 
            +
                output_column: str = "dots_ocr_output",
         | 
| 374 | 
            +
                bbox_column: str = "layout_bboxes",
         | 
| 375 | 
            +
                category_column: str = "layout_categories",
         | 
| 376 | 
            +
                text_column: str = "layout_texts",
         | 
| 377 | 
            +
                markdown_column: str = "markdown",
         | 
| 378 | 
            +
            ):
         | 
| 379 | 
            +
                """Process images from HF dataset through dots.ocr model."""
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                # Check CUDA availability first
         | 
| 382 | 
            +
                check_cuda_availability()
         | 
| 383 | 
            +
             | 
| 384 | 
            +
                # Enable HF_TRANSFER for faster downloads
         | 
| 385 | 
            +
                os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
         | 
| 386 | 
            +
             | 
| 387 | 
            +
                # Login to HF if token provided
         | 
| 388 | 
            +
                HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
         | 
| 389 | 
            +
                if HF_TOKEN:
         | 
| 390 | 
            +
                    login(token=HF_TOKEN)
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                # Load dataset
         | 
| 393 | 
            +
                logger.info(f"Loading dataset: {input_dataset}")
         | 
| 394 | 
            +
                dataset = load_dataset(input_dataset, split=split)
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                # Validate image column
         | 
| 397 | 
            +
                if image_column not in dataset.column_names:
         | 
| 398 | 
            +
                    raise ValueError(
         | 
| 399 | 
            +
                        f"Column '{image_column}' not found. Available: {dataset.column_names}"
         | 
| 400 | 
            +
                    )
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                # Limit samples if requested
         | 
| 403 | 
            +
                if max_samples:
         | 
| 404 | 
            +
                    dataset = dataset.select(range(min(max_samples, len(dataset))))
         | 
| 405 | 
            +
                    logger.info(f"Limited to {len(dataset)} samples")
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                # Process images in batches
         | 
| 408 | 
            +
                all_outputs = []
         | 
| 409 | 
            +
                
         | 
| 410 | 
            +
                if use_transformers or not VLLM_AVAILABLE:
         | 
| 411 | 
            +
                    # Use transformers
         | 
| 412 | 
            +
                    if not use_transformers and not VLLM_AVAILABLE:
         | 
| 413 | 
            +
                        logger.warning("vLLM not available, falling back to transformers")
         | 
| 414 | 
            +
                        
         | 
| 415 | 
            +
                    logger.info(f"Initializing transformers with model: {model}")
         | 
| 416 | 
            +
                    hf_model = AutoModelForCausalLM.from_pretrained(
         | 
| 417 | 
            +
                        model,
         | 
| 418 | 
            +
                        torch_dtype=torch.bfloat16,
         | 
| 419 | 
            +
                        device_map="auto",
         | 
| 420 | 
            +
                        trust_remote_code=True,
         | 
| 421 | 
            +
                    )
         | 
| 422 | 
            +
                    processor = AutoProcessor.from_pretrained(model, trust_remote_code=True)
         | 
| 423 | 
            +
                    
         | 
| 424 | 
            +
                    logger.info(f"Processing {len(dataset)} images with transformers")
         | 
| 425 | 
            +
                    logger.info(f"Mode: {mode}, Output format: {output_format}")
         | 
| 426 | 
            +
                    
         | 
| 427 | 
            +
                    # Process all images
         | 
| 428 | 
            +
                    all_images = [dataset[i][image_column] for i in range(len(dataset))]
         | 
| 429 | 
            +
                    raw_outputs = process_with_transformers(
         | 
| 430 | 
            +
                        all_images, 
         | 
| 431 | 
            +
                        hf_model, 
         | 
| 432 | 
            +
                        processor, 
         | 
| 433 | 
            +
                        mode=mode,
         | 
| 434 | 
            +
                        max_new_tokens=max_tokens
         | 
| 435 | 
            +
                    )
         | 
| 436 | 
            +
                    
         | 
| 437 | 
            +
                    # Parse outputs
         | 
| 438 | 
            +
                    for raw_text in raw_outputs:
         | 
| 439 | 
            +
                        parsed = parse_dots_output(raw_text, output_format, filter_category, mode)
         | 
| 440 | 
            +
                        all_outputs.append(parsed)
         | 
| 441 | 
            +
                        
         | 
| 442 | 
            +
                else:
         | 
| 443 | 
            +
                    # Use vLLM
         | 
| 444 | 
            +
                    logger.info(f"Initializing vLLM with model: {model}")
         | 
| 445 | 
            +
                    llm = LLM(
         | 
| 446 | 
            +
                        model=model,
         | 
| 447 | 
            +
                        trust_remote_code=True,
         | 
| 448 | 
            +
                        max_model_len=max_model_len,
         | 
| 449 | 
            +
                        gpu_memory_utilization=gpu_memory_utilization,
         | 
| 450 | 
            +
                    )
         | 
| 451 | 
            +
             | 
| 452 | 
            +
                    sampling_params = SamplingParams(
         | 
| 453 | 
            +
                        temperature=0.0,  # Deterministic for OCR
         | 
| 454 | 
            +
                        max_tokens=max_tokens,
         | 
| 455 | 
            +
                    )
         | 
| 456 | 
            +
             | 
| 457 | 
            +
                    logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
         | 
| 458 | 
            +
                    logger.info(f"Mode: {mode}, Output format: {output_format}")
         | 
| 459 | 
            +
             | 
| 460 | 
            +
                    # Process in batches to avoid memory issues
         | 
| 461 | 
            +
                    for batch_indices in tqdm(
         | 
| 462 | 
            +
                        partition_all(batch_size, range(len(dataset))),
         | 
| 463 | 
            +
                        total=(len(dataset) + batch_size - 1) // batch_size,
         | 
| 464 | 
            +
                        desc="dots.ocr processing",
         | 
| 465 | 
            +
                    ):
         | 
| 466 | 
            +
                        batch_indices = list(batch_indices)
         | 
| 467 | 
            +
                        batch_images = [dataset[i][image_column] for i in batch_indices]
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                        try:
         | 
| 470 | 
            +
                            # Create messages for batch
         | 
| 471 | 
            +
                            batch_messages = [make_dots_message(img, mode=mode) for img in batch_images]
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                            # Process with vLLM
         | 
| 474 | 
            +
                            outputs = llm.chat(batch_messages, sampling_params)
         | 
| 475 | 
            +
             | 
| 476 | 
            +
                            # Extract and parse outputs
         | 
| 477 | 
            +
                            for output in outputs:
         | 
| 478 | 
            +
                                raw_text = output.outputs[0].text.strip()
         | 
| 479 | 
            +
                                parsed = parse_dots_output(raw_text, output_format, filter_category, mode)
         | 
| 480 | 
            +
                                all_outputs.append(parsed)
         | 
| 481 | 
            +
             | 
| 482 | 
            +
                        except Exception as e:
         | 
| 483 | 
            +
                            logger.error(f"Error processing batch: {e}")
         | 
| 484 | 
            +
                            # Add error placeholders for failed batch
         | 
| 485 | 
            +
                            all_outputs.extend([{"error": str(e)}] * len(batch_images))
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                # Add columns to dataset based on output format
         | 
| 488 | 
            +
                logger.info("Adding output columns to dataset")
         | 
| 489 | 
            +
                
         | 
| 490 | 
            +
                if output_format == "json":
         | 
| 491 | 
            +
                    dataset = dataset.add_column(output_column, all_outputs)
         | 
| 492 | 
            +
                    
         | 
| 493 | 
            +
                elif output_format == "structured":
         | 
| 494 | 
            +
                    # Extract lists from structured outputs
         | 
| 495 | 
            +
                    bboxes = []
         | 
| 496 | 
            +
                    categories = []
         | 
| 497 | 
            +
                    texts = []
         | 
| 498 | 
            +
                    
         | 
| 499 | 
            +
                    for output in all_outputs:
         | 
| 500 | 
            +
                        if isinstance(output, dict) and "error" not in output:
         | 
| 501 | 
            +
                            bboxes.append(output.get("bboxes", []))
         | 
| 502 | 
            +
                            categories.append(output.get("categories", []))
         | 
| 503 | 
            +
                            texts.append(output.get("texts", []))
         | 
| 504 | 
            +
                        else:
         | 
| 505 | 
            +
                            bboxes.append([])
         | 
| 506 | 
            +
                            categories.append([])
         | 
| 507 | 
            +
                            texts.append([])
         | 
| 508 | 
            +
                    
         | 
| 509 | 
            +
                    dataset = dataset.add_column(bbox_column, bboxes)
         | 
| 510 | 
            +
                    dataset = dataset.add_column(category_column, categories)
         | 
| 511 | 
            +
                    dataset = dataset.add_column(text_column, texts)
         | 
| 512 | 
            +
                    
         | 
| 513 | 
            +
                elif output_format == "markdown":
         | 
| 514 | 
            +
                    dataset = dataset.add_column(markdown_column, all_outputs)
         | 
| 515 | 
            +
                
         | 
| 516 | 
            +
                else:  # ocr mode
         | 
| 517 | 
            +
                    dataset = dataset.add_column(output_column, all_outputs)
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                # Push to hub
         | 
| 520 | 
            +
                logger.info(f"Pushing to {output_dataset}")
         | 
| 521 | 
            +
                dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                logger.info("✅ dots.ocr processing complete!")
         | 
| 524 | 
            +
                logger.info(
         | 
| 525 | 
            +
                    f"Dataset available at: https://huggingface.co/datasets/{output_dataset}"
         | 
| 526 | 
            +
                )
         | 
| 527 | 
            +
             | 
| 528 | 
            +
             | 
| 529 | 
            +
            if __name__ == "__main__":
         | 
| 530 | 
            +
                # Show example usage if no arguments
         | 
| 531 | 
            +
                if len(sys.argv) == 1:
         | 
| 532 | 
            +
                    print("=" * 80)
         | 
| 533 | 
            +
                    print("dots.ocr Document Layout Analysis and OCR")
         | 
| 534 | 
            +
                    print("=" * 80)
         | 
| 535 | 
            +
                    print("\nThis script processes document images using the dots.ocr model to")
         | 
| 536 | 
            +
                    print("extract layout information, text content, or both.")
         | 
| 537 | 
            +
                    print("\nFeatures:")
         | 
| 538 | 
            +
                    print("- Layout detection with bounding boxes and categories")
         | 
| 539 | 
            +
                    print("- Text extraction with reading order preservation")
         | 
| 540 | 
            +
                    print("- Multiple output formats (JSON, structured, markdown)")
         | 
| 541 | 
            +
                    print("- Multilingual document support")
         | 
| 542 | 
            +
                    print("\nExample usage:")
         | 
| 543 | 
            +
                    print("\n1. Full layout analysis + OCR (default):")
         | 
| 544 | 
            +
                    print("   uv run dots-ocr.py document-images analyzed-docs")
         | 
| 545 | 
            +
                    print("\n2. Layout detection only:")
         | 
| 546 | 
            +
                    print("   uv run dots-ocr.py scanned-pdfs layout-analysis --mode layout-only")
         | 
| 547 | 
            +
                    print("\n3. Simple OCR (text only):")
         | 
| 548 | 
            +
                    print("   uv run dots-ocr.py documents extracted-text --mode ocr")
         | 
| 549 | 
            +
                    print("\n4. Convert to markdown:")
         | 
| 550 | 
            +
                    print("   uv run dots-ocr.py papers papers-markdown --output-format markdown")
         | 
| 551 | 
            +
                    print("\n5. Extract only tables:")
         | 
| 552 | 
            +
                    print("   uv run dots-ocr.py reports table-data --filter-category Table")
         | 
| 553 | 
            +
                    print("\n6. Structured output with custom columns:")
         | 
| 554 | 
            +
                    print("   uv run dots-ocr.py docs analyzed \\")
         | 
| 555 | 
            +
                    print("       --output-format structured \\")
         | 
| 556 | 
            +
                    print("       --bbox-column boxes \\")
         | 
| 557 | 
            +
                    print("       --category-column types \\")
         | 
| 558 | 
            +
                    print("       --text-column content")
         | 
| 559 | 
            +
                    print("\n7. Process a subset for testing:")
         | 
| 560 | 
            +
                    print("   uv run dots-ocr.py large-dataset test-output --max-samples 10")
         | 
| 561 | 
            +
                    print("\n8. Use transformers backend (more compatible):")
         | 
| 562 | 
            +
                    print("   uv run dots-ocr.py documents analyzed --use-transformers")
         | 
| 563 | 
            +
                    print("\n9. Running on HF Jobs:")
         | 
| 564 | 
            +
                    print("   hf jobs run --gpu l4x1 \\")
         | 
| 565 | 
            +
                    print("     -e HF_TOKEN=$(python3 -c \"from huggingface_hub import get_token; print(get_token())\") \\")
         | 
| 566 | 
            +
                    print(
         | 
| 567 | 
            +
                        "     uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \\"
         | 
| 568 | 
            +
                    )
         | 
| 569 | 
            +
                    print("       your-document-dataset \\")
         | 
| 570 | 
            +
                    print("       your-analyzed-output \\")
         | 
| 571 | 
            +
                    print("       --use-transformers")
         | 
| 572 | 
            +
                    print("\n" + "=" * 80)
         | 
| 573 | 
            +
                    print("\nFor full help, run: uv run dots-ocr.py --help")
         | 
| 574 | 
            +
                    sys.exit(0)
         | 
| 575 | 
            +
             | 
| 576 | 
            +
                parser = argparse.ArgumentParser(
         | 
| 577 | 
            +
                    description="Document layout analysis and OCR using dots.ocr",
         | 
| 578 | 
            +
                    formatter_class=argparse.RawDescriptionHelpFormatter,
         | 
| 579 | 
            +
                    epilog="""
         | 
| 580 | 
            +
            Modes:
         | 
| 581 | 
            +
              layout-all   - Extract layout + text content (default)
         | 
| 582 | 
            +
              layout-only  - Extract only layout information (bbox + category)
         | 
| 583 | 
            +
              ocr          - Extract only text content
         | 
| 584 | 
            +
              grounding-ocr - Extract text from specific bbox (requires --bbox)
         | 
| 585 | 
            +
             | 
| 586 | 
            +
            Output Formats:
         | 
| 587 | 
            +
              json        - Raw JSON output from model (default)
         | 
| 588 | 
            +
              structured  - Separate columns for bboxes, categories, texts
         | 
| 589 | 
            +
              markdown    - Convert to markdown format
         | 
| 590 | 
            +
             | 
| 591 | 
            +
            Examples:
         | 
| 592 | 
            +
              # Basic layout + OCR
         | 
| 593 | 
            +
              uv run dots-ocr.py my-docs analyzed-docs
         | 
| 594 | 
            +
             | 
| 595 | 
            +
              # Layout detection only
         | 
| 596 | 
            +
              uv run dots-ocr.py papers layouts --mode layout-only
         | 
| 597 | 
            +
             | 
| 598 | 
            +
              # Convert to markdown
         | 
| 599 | 
            +
              uv run dots-ocr.py scans readable --output-format markdown
         | 
| 600 | 
            +
             | 
| 601 | 
            +
              # Extract only formulas
         | 
| 602 | 
            +
              uv run dots-ocr.py math-docs formulas --filter-category Formula
         | 
| 603 | 
            +
                    """,
         | 
| 604 | 
            +
                )
         | 
| 605 | 
            +
             | 
| 606 | 
            +
                parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
         | 
| 607 | 
            +
                parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
         | 
| 608 | 
            +
                parser.add_argument(
         | 
| 609 | 
            +
                    "--image-column",
         | 
| 610 | 
            +
                    default="image",
         | 
| 611 | 
            +
                    help="Column containing images (default: image)",
         | 
| 612 | 
            +
                )
         | 
| 613 | 
            +
                parser.add_argument(
         | 
| 614 | 
            +
                    "--mode",
         | 
| 615 | 
            +
                    choices=["layout-all", "layout-only", "ocr", "grounding-ocr"],
         | 
| 616 | 
            +
                    default="layout-all",
         | 
| 617 | 
            +
                    help="Processing mode (default: layout-all)",
         | 
| 618 | 
            +
                )
         | 
| 619 | 
            +
                parser.add_argument(
         | 
| 620 | 
            +
                    "--output-format",
         | 
| 621 | 
            +
                    choices=["json", "structured", "markdown"],
         | 
| 622 | 
            +
                    default="json",
         | 
| 623 | 
            +
                    help="Output format (default: json)",
         | 
| 624 | 
            +
                )
         | 
| 625 | 
            +
                parser.add_argument(
         | 
| 626 | 
            +
                    "--filter-category",
         | 
| 627 | 
            +
                    choices=['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 
         | 
| 628 | 
            +
                             'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'],
         | 
| 629 | 
            +
                    help="Filter results by layout category",
         | 
| 630 | 
            +
                )
         | 
| 631 | 
            +
                parser.add_argument(
         | 
| 632 | 
            +
                    "--batch-size",
         | 
| 633 | 
            +
                    type=int,
         | 
| 634 | 
            +
                    default=32,
         | 
| 635 | 
            +
                    help="Batch size for processing (default: 32)",
         | 
| 636 | 
            +
                )
         | 
| 637 | 
            +
                parser.add_argument(
         | 
| 638 | 
            +
                    "--model",
         | 
| 639 | 
            +
                    default="rednote-hilab/dots.ocr",
         | 
| 640 | 
            +
                    help="Model to use (default: rednote-hilab/dots.ocr)",
         | 
| 641 | 
            +
                )
         | 
| 642 | 
            +
                parser.add_argument(
         | 
| 643 | 
            +
                    "--max-model-len",
         | 
| 644 | 
            +
                    type=int,
         | 
| 645 | 
            +
                    default=24000,
         | 
| 646 | 
            +
                    help="Maximum model context length (default: 24000)",
         | 
| 647 | 
            +
                )
         | 
| 648 | 
            +
                parser.add_argument(
         | 
| 649 | 
            +
                    "--max-tokens",
         | 
| 650 | 
            +
                    type=int,
         | 
| 651 | 
            +
                    default=16384,
         | 
| 652 | 
            +
                    help="Maximum tokens to generate (default: 16384)",
         | 
| 653 | 
            +
                )
         | 
| 654 | 
            +
                parser.add_argument(
         | 
| 655 | 
            +
                    "--gpu-memory-utilization",
         | 
| 656 | 
            +
                    type=float,
         | 
| 657 | 
            +
                    default=0.8,
         | 
| 658 | 
            +
                    help="GPU memory utilization (default: 0.8)",
         | 
| 659 | 
            +
                )
         | 
| 660 | 
            +
                parser.add_argument("--hf-token", help="Hugging Face API token")
         | 
| 661 | 
            +
                parser.add_argument(
         | 
| 662 | 
            +
                    "--split", default="train", help="Dataset split to use (default: train)"
         | 
| 663 | 
            +
                )
         | 
| 664 | 
            +
                parser.add_argument(
         | 
| 665 | 
            +
                    "--max-samples",
         | 
| 666 | 
            +
                    type=int,
         | 
| 667 | 
            +
                    help="Maximum number of samples to process (for testing)",
         | 
| 668 | 
            +
                )
         | 
| 669 | 
            +
                parser.add_argument(
         | 
| 670 | 
            +
                    "--private", action="store_true", help="Make output dataset private"
         | 
| 671 | 
            +
                )
         | 
| 672 | 
            +
                parser.add_argument(
         | 
| 673 | 
            +
                    "--use-transformers",
         | 
| 674 | 
            +
                    action="store_true",
         | 
| 675 | 
            +
                    help="Use transformers instead of vLLM (more compatible but slower)",
         | 
| 676 | 
            +
                )
         | 
| 677 | 
            +
                
         | 
| 678 | 
            +
                # Column name customization
         | 
| 679 | 
            +
                parser.add_argument(
         | 
| 680 | 
            +
                    "--output-column",
         | 
| 681 | 
            +
                    default="dots_ocr_output",
         | 
| 682 | 
            +
                    help="Column name for JSON output (default: dots_ocr_output)",
         | 
| 683 | 
            +
                )
         | 
| 684 | 
            +
                parser.add_argument(
         | 
| 685 | 
            +
                    "--bbox-column",
         | 
| 686 | 
            +
                    default="layout_bboxes",
         | 
| 687 | 
            +
                    help="Column name for bboxes in structured mode (default: layout_bboxes)",
         | 
| 688 | 
            +
                )
         | 
| 689 | 
            +
                parser.add_argument(
         | 
| 690 | 
            +
                    "--category-column",
         | 
| 691 | 
            +
                    default="layout_categories",
         | 
| 692 | 
            +
                    help="Column name for categories in structured mode (default: layout_categories)",
         | 
| 693 | 
            +
                )
         | 
| 694 | 
            +
                parser.add_argument(
         | 
| 695 | 
            +
                    "--text-column",
         | 
| 696 | 
            +
                    default="layout_texts",
         | 
| 697 | 
            +
                    help="Column name for texts in structured mode (default: layout_texts)",
         | 
| 698 | 
            +
                )
         | 
| 699 | 
            +
                parser.add_argument(
         | 
| 700 | 
            +
                    "--markdown-column",
         | 
| 701 | 
            +
                    default="markdown",
         | 
| 702 | 
            +
                    help="Column name for markdown output (default: markdown)",
         | 
| 703 | 
            +
                )
         | 
| 704 | 
            +
             | 
| 705 | 
            +
                args = parser.parse_args()
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                main(
         | 
| 708 | 
            +
                    input_dataset=args.input_dataset,
         | 
| 709 | 
            +
                    output_dataset=args.output_dataset,
         | 
| 710 | 
            +
                    image_column=args.image_column,
         | 
| 711 | 
            +
                    mode=args.mode,
         | 
| 712 | 
            +
                    output_format=args.output_format,
         | 
| 713 | 
            +
                    filter_category=args.filter_category,
         | 
| 714 | 
            +
                    batch_size=args.batch_size,
         | 
| 715 | 
            +
                    model=args.model,
         | 
| 716 | 
            +
                    max_model_len=args.max_model_len,
         | 
| 717 | 
            +
                    max_tokens=args.max_tokens,
         | 
| 718 | 
            +
                    gpu_memory_utilization=args.gpu_memory_utilization,
         | 
| 719 | 
            +
                    hf_token=args.hf_token,
         | 
| 720 | 
            +
                    split=args.split,
         | 
| 721 | 
            +
                    max_samples=args.max_samples,
         | 
| 722 | 
            +
                    private=args.private,
         | 
| 723 | 
            +
                    use_transformers=args.use_transformers,
         | 
| 724 | 
            +
                    output_column=args.output_column,
         | 
| 725 | 
            +
                    bbox_column=args.bbox_column,
         | 
| 726 | 
            +
                    category_column=args.category_column,
         | 
| 727 | 
            +
                    text_column=args.text_column,
         | 
| 728 | 
            +
                    markdown_column=args.markdown_column,
         | 
| 729 | 
            +
                )
         | 
    	
        nanonets-ocr.py
    CHANGED
    
    | @@ -91,11 +91,11 @@ def main( | |
| 91 | 
             
                input_dataset: str,
         | 
| 92 | 
             
                output_dataset: str,
         | 
| 93 | 
             
                image_column: str = "image",
         | 
| 94 | 
            -
                batch_size: int =  | 
| 95 | 
             
                model: str = "nanonets/Nanonets-OCR-s",
         | 
| 96 | 
             
                max_model_len: int = 8192,
         | 
| 97 | 
             
                max_tokens: int = 4096,
         | 
| 98 | 
            -
                gpu_memory_utilization: float = 0. | 
| 99 | 
             
                hf_token: str = None,
         | 
| 100 | 
             
                split: str = "train",
         | 
| 101 | 
             
                max_samples: int = None,
         | 
| @@ -251,8 +251,8 @@ Examples: | |
| 251 | 
             
                parser.add_argument(
         | 
| 252 | 
             
                    "--batch-size",
         | 
| 253 | 
             
                    type=int,
         | 
| 254 | 
            -
                    default= | 
| 255 | 
            -
                    help="Batch size for processing (default:  | 
| 256 | 
             
                )
         | 
| 257 | 
             
                parser.add_argument(
         | 
| 258 | 
             
                    "--model",
         | 
| @@ -274,8 +274,8 @@ Examples: | |
| 274 | 
             
                parser.add_argument(
         | 
| 275 | 
             
                    "--gpu-memory-utilization",
         | 
| 276 | 
             
                    type=float,
         | 
| 277 | 
            -
                    default=0. | 
| 278 | 
            -
                    help="GPU memory utilization (default: 0. | 
| 279 | 
             
                )
         | 
| 280 | 
             
                parser.add_argument("--hf-token", help="Hugging Face API token")
         | 
| 281 | 
             
                parser.add_argument(
         | 
|  | |
| 91 | 
             
                input_dataset: str,
         | 
| 92 | 
             
                output_dataset: str,
         | 
| 93 | 
             
                image_column: str = "image",
         | 
| 94 | 
            +
                batch_size: int = 32,
         | 
| 95 | 
             
                model: str = "nanonets/Nanonets-OCR-s",
         | 
| 96 | 
             
                max_model_len: int = 8192,
         | 
| 97 | 
             
                max_tokens: int = 4096,
         | 
| 98 | 
            +
                gpu_memory_utilization: float = 0.8,
         | 
| 99 | 
             
                hf_token: str = None,
         | 
| 100 | 
             
                split: str = "train",
         | 
| 101 | 
             
                max_samples: int = None,
         | 
|  | |
| 251 | 
             
                parser.add_argument(
         | 
| 252 | 
             
                    "--batch-size",
         | 
| 253 | 
             
                    type=int,
         | 
| 254 | 
            +
                    default=32,
         | 
| 255 | 
            +
                    help="Batch size for processing (default: 32)",
         | 
| 256 | 
             
                )
         | 
| 257 | 
             
                parser.add_argument(
         | 
| 258 | 
             
                    "--model",
         | 
|  | |
| 274 | 
             
                parser.add_argument(
         | 
| 275 | 
             
                    "--gpu-memory-utilization",
         | 
| 276 | 
             
                    type=float,
         | 
| 277 | 
            +
                    default=0.8,
         | 
| 278 | 
            +
                    help="GPU memory utilization (default: 0.8)",
         | 
| 279 | 
             
                )
         | 
| 280 | 
             
                parser.add_argument("--hf-token", help="Hugging Face API token")
         | 
| 281 | 
             
                parser.add_argument(
         | 

